【强化学习】在Pong环境下实现策略梯度

问题描述:

        确定环境中的最佳操作的规则叫做策略,学习这些策略的网络称为策略网络。

代码展示:

import numpy as np
import gym
import tensorflow as tf
import matplotlib.pyplot as plt

#Pong env
env = gym.make("Pong-v0")
observation = env.reset()
for i in range(22):
    #20 帧之后发球
    if i>20:
        plt.imshow(observation)
        plt.show()
    #得到下一个观察
    observation,_,_,_ = env.step(1)


#函数预处理输入数据
def preprocess_frame(frame):
    # 移去图像顶部和某些背景
    frame = frame[35:195,10:150] 
    # 图像帧度灰度化并缩小1/2
    frame = frame [::2,::2,0]
    # 设置背景值为0
    frame[frame==144] =0
    frame[frame ==109] = 0
    # 设置球拍及拍数为1
    frame[frame != 0] =1
    return frame.astype(np.float).ravel()

obs_preprocessed = preprocess_frame(observation).reshape(80,70)
plt.imshow(obs_preprocessed,cmap ='gray')
plt.show()



observation_next,_,_,_ = env.step(1)
diff = preprocess_frame(obs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值