PIL Numpy Tensor 中图像形状对应的意义

PIL Numpy Tensor 中图像形状对应的意义

图像可以转为PIL, Numpy以及Pytorch的Tensor中的任意一种形式,并且三种形式之间可以互相转换,并且三者都有可以打印图像形状的方式,但是三者打印出的形状代表的意义并不相同:

cat.jpg图片为一张像素为889*500的猫咪图像,如下所示:

请添加图片描述

image = Image.open('./cat.jpg').convert("RGBA")
image.size
>>> (889, 500)
image_array = np.array(image)
image_array.shape
>>> (500, 889, 4)
transform = transforms.Compose([transforms.ToTensor(),])
image_tensor = transform(image)
image_tensor.shape
>>> torch.Size([4, 500, 889])

可以看出,将原始的图像输入到PIL中的Image.open()方法中,得到的维度输出为(宽度,高度),而将Image转为numpy类型,得到的维度输出为(高度,宽度,通道数),将Image转为tensor类型,得到的维度输出为(通道数,高度,宽度)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值