462. Minimum Moves to Equal Array Elements II

462. Minimum Moves to Equal Array Elements II


Given a non-empty integer array, find the minimum number of moves required to make all array elements equal, where a move is incrementing a selected element by 1 or decrementing a selected element by 1.

You may assume the array’s length is at most 10,000.

Example:

Input:
[1,2,3]

Output:
2

Explanation:
Only two moves are needed (remember each move increments or decrements one element):

[1,2,3]  =>  [2,2,3]  =>  [2,2,2]

官方题解:https://leetcode.com/problems/minimum-moves-to-equal-array-elements-ii/solution/ (给了7种解法,真的有必要吗,显然是median)
grandyang: http://www.cnblogs.com/grandyang/p/6089060.html

方法1:

思路:

和Best Meeting Point这道题related。那么各个方法的区别就在于如何找到这个median。首先当然可以用quick select,问题是非常慢。

Complexity

Time complexity : Average Case: O(n). Quick-Select average case time complexity is O(n). Worst Case: O(n^ 2). In worst case quick-select can go upto n^2.
Space complexity : O(1). No extra space required.

class Solution {
public:
    int minMoves2(vector<int>& nums) {
        int n = nums.size();
        int median = 0;
        if (n % 2 == 0) {
           median = (findKth(nums, n / 2) + findKth(nums, n / 2 - 1)) / 2;
        }
        else {
           median = findKth(nums, n / 2);
        }
        
        int moves = 0;
        for (int num: nums){
            moves += abs(num - median);
        }
        return moves;
    }
    
    int findKth(vector<int> & nums, int k){
        int pos = - 1, start = 0, end = nums.size() - 1;
        while (start <= end){
            pos = partition(nums, start, end);
            if (pos == k) return nums[pos];
            else if (pos < k) start = pos + 1;
            else end = pos - 1;
        }
        return -1;
    }
    
    int partition(vector<int> & nums, int start, int end){
        int pivot = nums[start], left = start + 1, right = end;
        while (left <= right){
            if (nums[left] < pivot && nums[right] >= pivot) {
                swap(nums[left++], nums[right--]);
                
            }
            
            if (nums[left] >= pivot) left ++;
            if (nums[right] < pivot) right--;
            
        }
        swap(nums[start], nums[right]);
        
        return right;
    }
};

方法2: sort + median

思路:

排序,直接定位median。注意这里都不用区分奇偶,因为最后我们要取的也要做一次取整,如果是偶数直接取右中位

Complexity

Time complexity : O(nlogn). Sorting will take O(nlogn) time.
Space complexity : O(1). No extra space required.

class Solution {
public:
    int minMoves2(vector<int>& nums) {
        sort(nums.begin(), nums.end());
        int res = 0, mid = nums[nums.size() / 2];
        for (int num : nums) {
            res += abs(num - mid);
        }
        return res;
    }
};

方法3: without median

思路:

参见Best Meeting Point.

class Solution {
public:
    int minMoves2(vector<int>& nums) {
        int res = 0, i = 0, j = (int)nums.size() - 1;
        sort(nums.begin(), nums.end());
        while (i < j) {
            res += nums[j--] - nums[i++];
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值