331. Verify Preorder Serialization of a Binary Tree

331. Verify Preorder Serialization of a Binary Tree


One way to serialize a binary tree is to use pre-order traversal. When we encounter a non-null node, we record the node’s value. If it is a null node, we record using a sentinel value such as #.

 _9_
/   \

3 2
/ \ /
4 1 # 6
/ \ / \ /
/# # # # # #
For example, the above binary tree can be serialized to the string “9,3,4,#,#,1,#,#,2,#,6,#,#”, where # represents a null node.

Given a string of comma separated values, verify whether it is a correct preorder traversal serialization of a binary tree. Find an algorithm without reconstructing the tree.

Each comma separated value in the string must be either an integer or a character ‘#’ representing null pointer.

You may assume that the input format is always valid, for example it could never contain two consecutive commas such as “1,3”.

Example 1:

Input: “9,3,4,#,#,1,#,#,2,#,6,#,#”
Output: true
Example 2:

Input: “1,#”
Output: false
Example 3:

Input: “9,#,#,1”
Output: false

方法1: recursion

思路:

本质上是一种自下而上的检查方式。如果用递归的方式,首先根据preorder的性质可以知道当前位置就是root,而要递归求解需要知道left和right的起始位置。为了知道right的起始位置,一定要知道left的size。而为了知道left的size必须遍历到底,遇到“#”才可以返回“1”。而left一定要出现在i + 1的位置,right一定需要出现在i + left + 1的位置,如果没有找到任意一个子树,需要return invalid。

class Solution {
public:
    bool isValidSerialization(string preorder) {
        string node;
        istringstream in(preorder);
        vector<string> st;
        while (getline(in, node, ',')) st.push_back(node);
        
        if (isValid(st, 0) == st.size()) return true;
        return false;
    }
    
    int isValid(vector<string> & st, int i) {
        if (i >= st.size()) return -1;
        
        if (st[i] == "#") return 1;
        bool validFlag = true;
        int left = isValid(st, i + 1);
        if (left < 0) return -1;
        int right = isValid(st, i + left + 1);
        if (right < 0) return -1;
        return 1 + left + right;
    }
};

方法2: stack

思路:

如:”9,3,4,#,#,1,#,#,2,#,6,#,#” 遇到x # #的时候,就把它变为 #

模拟一遍过程:

9,3,4,#,# => 9,3,# 继续读
9,3,#,1,#,# => 9,3,#,# => 9,# 继续读
9,#2,#,6,#,# => 9,#,2,#,# => 9,#,# => #

class Solution(object):
    def isValidSerialization(self, preorder):
        """
        :type preorder: str
        :rtype: bool
        """
        stack = []
        for node in preorder.split(','):
            stack.append(node)
            while len(stack) >= 3 and stack[-1] == stack[-2] == '#' and stack[-3] != '#':
                stack.pop(), stack.pop(), stack.pop()
                stack.append('#')
        return len(stack) == 1 and stack.pop() == '#'

reverse iterator, ++it是向前运动。

class Solution {
public:
    bool isValidSerialization(string preorder) {
        string node;
        istringstream in(preorder);
        vector<string> st;
        while (getline(in, node, ',')) {
            st.push_back(node);
            while (st.size() >= 3){
                auto it= st.rbegin();
                string top1 = *it;
                string top2 = *(++it);
                
                if (top1 == "#" && top2 == "#" && *(++it) != "#") {
                    st.pop_back(); st.pop_back(); st.pop_back();
                    st.push_back("#");
                }
                else break;
            }
        }
       
        return st.size() == 1 && st[0] == "#";
    }
};
【Solution】 To convert a binary search tree into a sorted circular doubly linked list, we can use the following steps: 1. Inorder traversal of the binary search tree to get the elements in sorted order. 2. Create a doubly linked list and add the elements from the inorder traversal to it. 3. Make the list circular by connecting the head and tail nodes. 4. Return the head node of the circular doubly linked list. Here's the Python code for the solution: ``` class Node: def __init__(self, val): self.val = val self.prev = None self.next = None def tree_to_doubly_list(root): if not root: return None stack = [] cur = root head = None prev = None while cur or stack: while cur: stack.append(cur) cur = cur.left cur = stack.pop() if not head: head = cur if prev: prev.right = cur cur.left = prev prev = cur cur = cur.right head.left = prev prev.right = head return head ``` To verify the accuracy of the code, we can use the following test cases: ``` # Test case 1 # Input: [4,2,5,1,3] # Output: # Binary search tree: # 4 # / \ # 2 5 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 <-> 4 <-> 5 # Doubly linked list in reverse order: 5 <-> 4 <-> 3 <-> 2 <-> 1 root = Node(4) root.left = Node(2) root.right = Node(5) root.left.left = Node(1) root.left.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) # Test case 2 # Input: [2,1,3] # Output: # Binary search tree: # 2 # / \ # 1 3 # Doubly linked list: 1 <-> 2 <-> 3 # Doubly linked list in reverse order: 3 <-> 2 <-> 1 root = Node(2) root.left = Node(1) root.right = Node(3) head = tree_to_doubly_list(root) print("Binary search tree:") print_tree(root) print("Doubly linked list:") print_list(head) print("Doubly linked list in reverse order:") print_list_reverse(head) ``` The output of the test cases should match the expected output as commented in the code.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值