Iterated Logarithm Function 多重对数函数

本文深入探讨了Iterated Logarithm Function的概念及其在算法导论中的应用,阐述了其定义、特性以及与基本数学运算的关系。通过具体实例展示了函数迭代的过程,并解释了其在复杂算法分析中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在算法导论中 Iterated Logarithm Function是在Functional iteration 之后引出的。

Function Iteration 讲的是函数的迭代



Iterated Logarithm Function 多重对数函数——通俗地讲,就是使得lg * n ≦ 1 的最小 i 值。

We use the notation lg* n (read "log star of n") to denote the iteratedlogarithm, which is

defined as follows. Let lg(i) n be as defined below, with f(n) = lg n. Because the logarithm of a
nonpositive number is undefined, lg(i) n is defined only if lg(i-1)n > 0.Be sure to distinguish
lg(i) n (the logarithm function applieditimes insuccession, starting with argument n) from lgi
n (the logarithm of n raised to the ith power).
The iteratedlogarithm function is defined as
lg* n= min {i >= 0: lg(i) n ≤ 1}.


The iterated logarithm is a very slowly growing function:
lg*2 = 1,
————lg*2 = 1+lg*(lg2) = 1+ lg*1 = 1+0 = 1(PS. lg是以2为底的对数)

lg*4 = 2,————lg*4 = 1+lg*(lg4) = 1+ lg*2 = 1+1 = 2

lg*16 = 3,———-lg*16 = 1+lg*(lg16) = 1+ lg*4 = 1+2 = 3

lg*65536= 4,—--lg*65536= 1+lg*(lg65536) = 1+ lg*16 = 1+3 = 4

lg*(2^65536) = 5.

星号后面的数位意味着:



Since the number of atoms in the observable universe is estimated to beabout 1080, which is
much less than 265536, we rarely encounter an input size n such that lg* n > 5.

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值