图机器学习基础知识——CS224W(09-theory)

CS224W: Machine Learning with Graphs

Stanford / Winter 2021

09-theory

Key Idea: How powerful are GNNs?

本节图,相同颜色的节点代表它们具有相同的特征向量

  • GCN (mean-pool): Element-wise mean pooling + Linear + ReLU non-linearity

  • GraphSAGE (max-pool): MLP + element-wise max-pooling

Local Neighborhood Structures

Key Question: How well can a GNN distinguish different graph structures?

  • 我们考虑一个节点的(k-hop)局部邻居结构

    在这里插入图片描述

    • 节点1和5有不同局部邻居结构,因为它们的度明显不同

    • 节点1和4也有不同的局部邻居结构,虽然它们的度都为2,但它们邻居节点的度不同

    • 但是,节点1和2有相同的局部邻居结构,它们在图中是对称的(本身、邻居、邻居的邻居…的度都相同),所以无法区分它们

Computation Graph

  • 从节点1和2的Computation Graph考虑

    在这里插入图片描述

    在这里插入图片描述

    • 节点1和2的计算图完全相同,GNN会对节点1和2产生完全一样的embedding vector(计算图一样,节点特征都一样),所以区分不出
  • Rooted subtree structures

    在这里插入图片描述

    • Computational graphs are identical to rooted subtree structures around each node

    • GNN’s node embeddings capture rooted subtree structures

    • Most expressive GNN maps different rooted subtrees into different node embeddings (表达能力最强的GNN将不同的rooted subtrees映射到不同的embedding)

    在这里插入图片描述

    • 上述其实说的就是单射函数的概念 (Injective Function),单射函数将不同的输入映射到不同的输出,因此单射函数保留了所有输入的信息

    在这里插入图片描述

    • Most expressive GNN should map subtrees to the node embeddings injectively

    • 同深度的subtree可以被自底向上特征化

    在这里插入图片描述

    • 自底向上的过程其实就是Aggregation的过程,所以如果GNN的每一次Aggregation都能完整保留邻居的信息,那么产生的node embedding就能分辨出不同的rooted subtree

    • 总的来说,表达能力最强的GNN应该使用一个单射邻居聚合函数(Injective Neighbor Aggregation Function)

    • 基于以上讨论,GNN的表达能力取决于使用的邻居聚合函数

Neighbor Aggregation

分析不同的聚合策略存在的问题

  • 假设不同颜色的节点代表不同的node embedding,且用one-hot vector表示

    在这里插入图片描述

GCN (mean-pool)
  • Failure case

    在这里插入图片描述

    • 使用mean-pool会丢失信息
GraphSAGE (max-pool)
  • Failure case

    在这里插入图片描述

    • 使用max-pool也会丢失信息

    • sum-pool也会丢失信息(-10, 10和5, -5,sum-pool都为0)

Designing Most Expressive GNNs

Key Idea: 构造单射的邻居聚合函数

  • Injective Multi-Set Function

    • 单射函数可以被表示为如下图所示形式

    在这里插入图片描述

    在这里插入图片描述

  • Thoery: Universal Approximation Theorem

    • 根据通用近似定理,具备足够大的hidden dimension、合适activate function的一层的MLP就可以以任意精度近似任何函数

    • 所以我们可以用MLP来建模非线性函数$$

      MLP ⁡ Φ ( ∑ x ∈ S MLP ⁡ f ( x ) ) \operatorname{MLP}_{\Phi}\left(\sum_{x \in S} \operatorname{MLP}_{f}(x)\right) MLPΦ(xSMLPf(x))
      MLP的hidden dimension一般取100-500足够

Graph Isomorphism Network (GIN)

GIN

  • GIN使用正是使用如下函数作为聚合策略

    MLP ⁡ Φ ( ∑ x ∈ S MLP ⁡ f ( x ) ) \operatorname{MLP}_{\Phi}\left(\sum_{x \in S} \operatorname{MLP}_{f}(x)\right) MLPΦ(xSMLPf(x))

    • 先将每条来自邻居节点的消息都经过MLP,然后再将它们element-wise相加,最后再经过另一个MLP

    • GIN‘s neighbor aggregation function is injective

    • No failure cases!

    • GIN is THE most expressive GNN in the class of message-passing GNNs! (GIN在消息传递架构的GNN里是表达能力最强的)

  • Relation to WL Graph Kernel

    • GIN其实是WL Graph Kernel的神经网络版本

    • 在WL Color Refinement算法中,使用如下函数更新节点信息

      c ( k + 1 ) ( v ) = HASH ⁡ ( c ( k ) ( v ) , { c ( k ) ( u ) } u ∈ N ( v ) ) c^{(k+1)}(v)=\operatorname{HASH}\left(c^{(k)}(v),\left\{c^{(k)}(u)\right\}_{u \in N(v)}\right) c(k+1)(v)=HASH(c(k)(v),{c(k)(u)}uN(v))
      这里的Hash函数就是单射的,不存在任何哈希碰撞

      • WL Test: 运行Color Refinement直到颜色稳定,若此时两图的节点颜色集合完全相同,则说明这两张图是同构的(isomorphic),否则是非同构的(non-isomorphic)
  • 特别的,所有元组的单射函数可以被建模为如下公式 (把自身的特征与邻居的特征都考虑进来)

    MLP ⁡ Φ ( ( 1 + ϵ ) ⋅ MLP ⁡ f ( c ( k ) ( v ) ) ) + ∑ u ∈ N ( v ) MLP ⁡ f ( c ( k ) ( u ) ) ) \left.\operatorname{MLP}_{\Phi}\left((1+\epsilon) \cdot \operatorname{MLP}_{f}\left(c^{(k)}(v)\right)\right)+\sum_{u \in N(v)} \operatorname{MLP}_{f}\left(c^{(k)}(u)\right)\right) MLPΦ((1+ϵ)MLPf(c(k)(v)))+uN(v)MLPf(c(k)(u))
    其中, ϵ \epsilon ϵ是可学习参数。GIN使用的正是如上单射函数进行邻居聚合

    在这里插入图片描述

    在这里插入图片描述

  • GIN相比于WL Graph Kernel的优势

    • 节点特征是d-dimensional feature vector,能获得比WL更细粒度的特征

    • GIN有可学习参数可适用于下游任务

  • The Power of Pooling

    • Graph Pooling分辨能力排序:sum-pooing > mean-pooing > max-pooling

    在这里插入图片描述

  • Improving GNN’s power

    • 一些前沿问题

    在这里插入图片描述

  • 26
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值