第8章 AdaBoost算法

Bagging和Boosting的区别

1)样本选择上:

Bagging:训练集是在原始集中有放回选取的,从原始集中选出的各轮训练集之间是独立的.

Boosting:每一轮的训练集不变,只是训练集中每个样例在分类器中的权重发生变化.而权值是根据上一轮的分类结果进行调整.

2)样例权重:

Bagging:使用均匀取样,每个样例的权重相等

Boosting:根据错误率不断调整样例的权值,错误率越大则权重越大.

3)预测函数:

Bagging:所有预测函数的权重相等.

Boosting:每个弱分类器都有相应的权重,对于分类误差小的分类器会有更大的权重.

4)并行计算:

Bagging:各个预测函数可以并行生成

Boosting:各个预测函数只能顺序生成,因为后一个模型参数需要前一轮模型的结果

AdaBoost算法

算法1(AdaBoost)
输入:训练数据集 T={(x1,y1),(x2,y2),...,(xN,yN)} T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } ,其中 xiχRn x i ∈ χ ⊆ R n yiy={1,+1} y i ∈ y = { − 1 , + 1 } ;弱学习算法;
输出:最终分类器 G(x) G ( x )
(1)初始化训练数据的权值分布

D1=(w11,...,w1i,...,w1N)w1i=1N,I=1,2,...,N D 1 = ( w 11 , . . . , w 1 i , . . . , w 1 N ) , w 1 i = 1 N , I = 1 , 2 , . . . , N

(2)对 m=1,2,...,M m = 1 , 2 , . . . , M
(a)使用具有权值分布 Dm D m 的训练数据集学习,得到基本分类器
Gm(x):χ{1,+1} G m ( x ) : χ → { − 1 , + 1 }

(b)计算 Gm(x) G m ( x ) 在训练数据集上的分类误差率
em=P(Gm(xi)yi)=i=1NwmiI(Gm(xi)yi)(1) (1) e m = P ( G m ( x i ) ≠ y i ) = ∑ i = 1 N w m i I ( G m ( x i ) ≠ y i )

(c)计算 Gm(x) G m ( x ) 的系数
αm=12log1emem(2) (2) α m = 1 2 log ⁡ 1 − e m e m
这里的对数是自然对数。
(d)更新训练数据集的权值分布
Dm+1=(wm+1,1,...,wm+1,i,wm+1,N)(3) (3) D m + 1 = ( w m + 1 , 1 , . . . , w m + 1 , i , w m + 1 , N )
wm+1,i=wm,iZmexp(αmyiGm(xi))(4) (4) w m + 1 , i = w m , i Z m exp ⁡ ( − α m y i G m ( x i ) )
这里, Zm Z m 是规划化因子
Zm=i=1Nwm,1exp(αmyiGm(xi))(5) (5) Z m = ∑ i = 1 N w m , 1 exp ⁡ ( − α m y i G m ( x i ) )
它使 Dm+1 D m + 1 成为一个概率分布。
(3)构建基本分类器的线性组合
f(x)=m=1MαmGm(x)(6) (6) f ( x ) = ∑ m = 1 M α m G m ( x )
得到最终分类器
G(x)=sign(f(x))=sign(m=1MαmGm(x))(7) (7) G ( x ) = s i g n ( f ( x ) ) = s i g n ( ∑ m = 1 M α m G m ( x ) )

定理8.1 (AdaBoost的训练误差界) AdaBoost算法最终分类器的训练误差界为
1Ni=1NI(G(xi)yi)1Niexp(yif(xi))=mZm(9) (9) 1 N ∑ i = 1 N I ( G ( x i ) ≠ y i ) ≤ 1 N ∑ i exp ⁡ ( − y i f ( x i ) ) = ∏ m Z m
这里, G(x),f(x) G ( x ) , f ( x ) Zm Z m 分别由式(7),(6),(5)给出。

前向分布算法

算法2(前向分布算法)
输入:训练数据集 T={(x1,y1),(x2,y2),...,(xN,yN)} T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } ;损失函数 L(y,f(x)) L ( y , f ( x ) ) ;基函数集 b(x;γ) b ( x ; γ )
输出:加法模型 f(x) f ( x )
(1)初始化 f0(x)=0 f 0 ( x ) = 0
(2)对 m=1,2,...,M m = 1 , 2 , . . . , M
(a)极小化损失函数

(βm,γm)=argminβ,γi=1NL(yi,fm1(xi)+βb(xi;γ))(10) (10) ( β m , γ m ) = a r g min β , γ ∑ i = 1 N L ( y i , f m − 1 ( x i ) + β b ( x i ; γ ) )
得到参数 βm,γm β m , γ m
(b)更新
fm(x)=fm1(x)+βmb(x;γm)(11) (11) f m ( x ) = f m − 1 ( x ) + β m b ( x ; γ m )

(3)得到加法模型
f(x)=fM(x)=m=1Mβmb(x;γm)(12) (12) f ( x ) = f M ( x ) = ∑ m = 1 M β m b ( x ; γ m )

这样,前向分步算法将同时求解从 m=1 m = 1 M M 所有参数βm,γm的优化问题简化为逐次求解各个 βm,γm β m , γ m 的优化问题.

提升树

提升树是以分类树或回归树为基本分类器的提升方法。

提升树模型

提升方法实际采用加法模型(即基函数的线性组合)与前向分步算法。以决策树为基函数的提升方法称为提升树(boosting tree)。对分类问题决策树是二叉分类树,对回归问题决策树是二叉回归树。提升树模型可以表示为决策树的加法模型:

fM(x)=m=1MT(x;Θm)(13) (13) f M ( x ) = ∑ m = 1 M T ( x ; Θ m )
其中, T(x;Θm) T ( x ; Θ m ) 表示决策树; Θm Θ m 为决策树的参数; M M 为树的个数。
算法3 (回归问题的提升树算法)
输入:训练数据集T={(x1,y1),(x2,y2),...,(xN,yN)},其中 xiχRn x i ∈ χ ⊆ R n yiyR y i ∈ y ⊆ R
输出:提升树 fM(x) f M ( x )
(1)初始化 f0(x)=0 f 0 ( x ) = 0
(2)对 m=1,2,...,M m = 1 , 2 , . . . , M
(a)计算残差
rmi=yifm1(xi),i=1,2,...,N r m i = y i − f m − 1 ( x i ) , i = 1 , 2 , . . . , N

(b)拟合残差
rmi r m i
学习一个回归树,得到 T(x,Θm) T ( x , Θ m )
(c)更新 fm(x)=fm1(x)+T(x;Θm) f m ( x ) = f m − 1 ( x ) + T ( x ; Θ m )
(3)得到回归问题提升树
fM(x)=m=1MT(x;Θm) f M ( x ) = ∑ m = 1 M T ( x ; Θ m )

梯度提升

提升树利用加法模型与前向分步算法实现学习的优化过程。当损失函数是平方损失和指数损失函数时,每一步优化是很简单的,但对于一般损失函数而言,可以利用梯度提升算法(gradient boosting)。这是利用最速下降法的近似方法,其关键是利用损失函数的负梯度在当前模型的值

[L(y,f(xi))f(xi)]f(x)=fm1(x) − [ ∂ L ( y , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x )
作为回归问题提升树算法中的残差的近似值,拟合一个回归树。
算法4(梯度提升算法)
输入:训练数据集 T={(x1,y1),(x2,y2),...,(xN,yN)} T = { ( x 1 , y 1 ) , ( x 2 , y 2 ) , . . . , ( x N , y N ) } ,其中 xiχRn x i ∈ χ ⊆ R n yiyR y i ∈ y ⊆ R ;损失函数L(y,f(x));
输出:回归树 f^(x) f ^ ( x ) .
(1) 初始化
f0(x)=argminci=1NL(yi,c) f 0 ( x ) = a r g min c ∑ i = 1 N L ( y i , c )

(2)对 m=1,2,...,M m = 1 , 2 , . . . , M
(a)对 i=1,2,...,N i = 1 , 2 , . . . , N ,计算
rmi=[L(y,f(xi))f(xi)]f(x)=fm1(x) r m i = − [ ∂ L ( y , f ( x i ) ) ∂ f ( x i ) ] f ( x ) = f m − 1 ( x )

(b)对 rmi r m i 拟合一个回归树,得到第 m m 颗树的叶结点区域Rmj,j=1,2,...,J
(c)对 j=1,2,...,J j = 1 , 2 , . . . , J ,计算
cmj=argmincxiRmjL(yi,fm1(xi)+c) c m j = a r g min c ∑ x i ∈ R m j L ( y i , f m − 1 ( x i ) + c )

(d)更新 fm(x)=fm1(x)+Jj=1cmjI(XRmj) f m ( x ) = f m − 1 ( x ) + ∑ j = 1 J c m j I ( X ∈ R m j )
(3)得到回归树
f^(x)=fM(x)=m=1Mj=1JcmjI(XRmj) f ^ ( x ) = f M ( x ) = ∑ m = 1 M ∑ j = 1 J c m j I ( X ∈ R m j )

算法第1步初始化,估计使损失函数极小化的常数值,它是只有一个根结点的树。第2(a)步计算损失函数的负梯度在当前模型的值,将它作为残差的估计。对于平方损失函数,它就是通常所说的残差;对于一般损失函数,它就是残差的近似值。第2(b)估计回归树叶结点区域,以拟合残差的近似值。第2(c)步更新回归树。第3步得到输出的最终模型 f^(x) f ^ ( x )

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值