机器学习机器学习相关矩阵知识(七)
矩阵与线性方程组
矩阵描述线性方程组的方法:
决定线性方程组解的因素
如果方程组有解,需要使等式Ax=b成立,那么向量b必须在向量啊的列空间上,换句话说向量是向量A各列向量的线性组合时,才能保证方程有解。那么,根据空间映射相关知识,矩阵的秩r,行数m与列数n与方程组的解数相关。
共有4种情况:
①r=m=n
当矩阵A满足上述条件时,它是一个满秩的方阵。r=m=n说明原始空间,目标空间与列空间的维数相同都是Rr,或者说目标空间Rr中的任一一个向量都在矩阵A的列空间上,由于不存在空间压缩的情况,所以此时方程组有解且解是唯一解。
同时由于A是满秩方阵,所以其逆方阵存在,因此我们可以求得向量x的表达式为:Ax=b→A-1Ax=A-1b→x=A-1b
②r=m<n
当矩阵a满足上述条件时,r=m说明目标空间是一个Rr空间与列空间相等,同样说明目标空间的所有向量都在矩阵A的列空间上。所以,方程组一定有解。但同时由于