# 机器学习python:机器学习相关矩阵知识(七)空间映射与求解线性方程组

本文介绍了机器学习中矩阵与线性方程组的关系,探讨了决定线性方程组解的因素,包括满秩方阵、空间压缩矩阵等不同情况下的解的性质。解的表达方式分为唯一解、无解和无数解,并详细阐述了如何表示这些解。最后,文章提及了使用Python进行相关应用的可能性。
摘要由CSDN通过智能技术生成

机器学习机器学习相关矩阵知识(七)

矩阵与线性方程组

矩阵描述线性方程组的方法:
在这里插入图片描述

决定线性方程组解的因素

如果方程组有解,需要使等式Ax=b成立,那么向量b必须在向量啊的列空间上,换句话说向量是向量A各列向量的线性组合时,才能保证方程有解。那么,根据空间映射相关知识,矩阵的秩r,行数m与列数n与方程组的解数相关。
共有4种情况:
r=m=n
当矩阵A满足上述条件时,它是一个满秩的方阵。r=m=n说明原始空间,目标空间与列空间的维数相同都是Rr,或者说目标空间Rr中的任一一个向量都在矩阵A的列空间上,由于不存在空间压缩的情况,所以此时方程组有解且解是唯一解。
同时由于A是满秩方阵,所以其逆方阵存在,因此我们可以求得向量x的表达式为:Ax=b→A-1Ax=A-1b→x=A-1b
r=m<n
当矩阵a满足上述条件时,r=m说明目标空间是一个Rr空间与列空间相等,同样说明目标空间的所有向量都在矩阵A的列空间上。所以,方程组一定有解。但同时由于

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值