# 机器学习python:机器学习相关矩阵知识(七)空间映射与求解线性方程组

本文介绍了机器学习中矩阵与线性方程组的关系,探讨了决定线性方程组解的因素,包括满秩方阵、空间压缩矩阵等不同情况下的解的性质。解的表达方式分为唯一解、无解和无数解,并详细阐述了如何表示这些解。最后,文章提及了使用Python进行相关应用的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

机器学习机器学习相关矩阵知识(七)

矩阵与线性方程组

矩阵描述线性方程组的方法:
在这里插入图片描述

决定线性方程组解的因素

如果方程组有解,需要使等式Ax=b成立,那么向量b必须在向量啊的列空间上,换句话说向量是向量A各列向量的线性组合时,才能保证方程有解。那么,根据空间映射相关知识,矩阵的秩r,行数m与列数n与方程组的解数相关。
共有4种情况:
r=m=n
当矩阵A满足上述条件时,它是一个满秩的方阵。r=m=n说明原始空间,目标空间与列空间的维数相同都是Rr,或者说目标空间Rr中的任一一个向量都在矩阵A的列空间上,由于不存在空间压缩的情况,所以此时方程组有解且解是唯一解。
同时由于A是满秩方阵,所以其逆方阵存在,因此我们可以求得向量x的表达式为:Ax=b→A-1Ax=A-1b→x=A-1b
r=m<n
当矩阵a满足上述条件时,r=m说明目标空间是一个Rr空间与列空间相等,同样说明目标空间的所有向量都在矩阵A的列空间上。所以,方程组一定有解。但同时由于

学习人工智能,机器学习都离不开数学基础和编程知识。无论你是数据科学的初学者还是已经从事人工智能开发的有经验人员,这门课都适合于你。为什么这么说?首先人工智能和机器学习本质上就是算法,而算法就是数学及统计学以及编程的结合。当前市场上有许多开源的软件包如SKLEARN确实可以帮助没经验的或缺乏数学或算法基础的人实现机器学习模型及预测,但这些工具无法使你真正懂得算法的本质或来源,或者无法使你在不同场合下灵活运用及改进算法。记住,在实际工作中找到适合应用场景的解决方案是最难但是最重要的。但这离不开数学基础和算法理解。比如,线性回归是一类普遍的机器学习算法,所有的机器学习软件都有现成的方法实现模型,但如果在训练数据中加入几条新数据,那么新建立的模型和原来的模型有和联系或不同?再比如,为什么深度神经网络中的Sigmoid函数一般只用到输出层?神经网络的向后传播理论如何泰勒展开和复合函数的偏导数联系在一起?人工智能中推荐系统和文字向量如何矩阵的奇异分解以及特征向量联系?模型中对标签进行数据变换如何影响预测值?所有这些问题的答案,你都可以从本课中找到线索。本课系统地讲述了有关人工智能,机器学习背后的数学知识。特别指出,微积分和代数知识是本课的核心。统计学基础被安排在另外的课程中。除此之外,我在每一章节或主要知识点后都安排了各类程序以解释和回顾所学到的东西。最后要提到的是,这不是一门工程项目实践课。但我会另外专门安排有关人工智能,机器学习的实践课程
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值