# 机器学习python:机器学习相关矩阵知识(二)基底与张成空间

本文介绍了机器学习中关于矩阵知识的两个核心概念——基底和张成空间。基底是构成向量空间基准的一组线性无关向量,任何向量都可由基底向量的线性组合唯一表示。张成空间则是由一组向量的所有线性组合构成的空间。文章还提供了Python实现相关概念的示例。
摘要由CSDN通过智能技术生成

机器学习:机器学习相关矩阵知识(二)

基底

定义:对于向量u而言,它的基底是构成其基准的一组向量。
如:在这里插入图片描述
要求:n维空间中的基底,由n个向量 构成,这n个向量必须满足线性无关,才可以成为基底。换句话说一组向量(e1,e2, ·········,en)构成n维空间的一组基底,就必须满足n维空间中的任意一个向量v,可以有且仅有一种表示 v= x1e1+x2e2+x3e3+······+xnen.

性质:向量在不同基底上表示为不同的坐标。
如:
在这里插入图片描述
python 实现:

import numpy as np
import math
u=np.array([5
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值