# 机器学习python:机器学习相关矩阵知识(八)矩阵的近似与拟合(下)

机器学习python:机器学习相关矩阵知识(八)矩阵的近似与拟合(下)

互补的子空间

在Rm空间中有一个向量b。可以选取m个显影无关的向量a1,a2,·······,am作为Rm空间中的一组基向量,将向量b向Rm的每个基向量上投影,就能的到m个投影向量:p1,p2,·······,pm.并且他们满足: b = p1+p2+·····+pm,即通过空间中的所有投影轴上的投影可以重构向量b的完整信息。
而互补子空间的概念是这样的,当我们有一个由a1,a2,·······,am-1构成的Rm-1空间时,向量b在各个基向量上的投影分别为:p1,p2,·······,pm-1.此时向量b在这个Rm-1空间上的投影可以表示为p1+p2+·······+pm-1,但此时在Rm-1的投影并没有完全包含向量b的所有信息,必须加上向量b在am上的投影才能完整的构建出向量b,此时称由a1,a2,·······,am-1构成的Rm-1空间与am构成的直线为互补关系。

正交子空间

当子空间U与子空间W在同一个Rm空间中,且满足子空间A追至与子空间U的每一个向量都垂直时,我们称两个子空间为正交子空间。

相互正交补子空间

当Rm空间中的两个互补的子空间,如过满足相互正交,则称他们为满足正交补的关系。在之前的学习中我们知道e=b-p,b=p+e;e·p=0,e垂直于p所在平面,所以向量e与向量p所在的子空间互为正交补子空间。所以当我们在Rm中找到两组满足正交补关系的子空间时,就知道向量在哪里投影。

处理无解方程组的近似解

当我们求线性方程组Ax=b时,矩阵A的线性组合构成了其列空间,如果要求方程组有解,内必须满足向量b在矩阵A的列空间上。如果向量b不在向量A的列空间上则方程无解。当方程无解时,我们应当寻找一个距离向量b最近的向量,并使这个向量在矩阵A的列空间上,从而得到近似原线性方程的近似解。
将向量b向向量A的列空间进行投影,获得投影向量p。而误差向量e则正是向量b向列空间的正交补空间——左零空间的投影(ATx=0), 向量 x ^ \hat{x} x^则是我们获得的近似解向量。
例题:
2 x + y = 4 x + 2 y = 3 x + 4 y = 9 2x+y=4\\x+2y=3\\x+4y=9 2x+y=4x+2y=3x+4y=9
求这个方程的解或者近似解
首先我们将这个式子化为矩阵式得:
A= [ 2 1 1 2 1 4 ] \begin{bmatrix}2&1 \\1&2\\1&4\\ \end{bmatrix} 211124

  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值