这里要讲到形态S+p型小波变换,它的一维的形式如下:
整型序列c[n],n=0,1,...N-1,N为偶数,可以分解成以下两个序列:
l[n] = INT[(c[2n]+c[2n+1])/2]; n=0,1,...N/2-1
h[n] = c[2n]-c[2n+1]; n=0,1,...N/2-1
信号的反变换为:
c[2n] = l[n]+INT((h[n]+1)/2);
c[2n+1] = c[2n]-h[n];
其中INT为向下取整。
如果序列为doulle型,那么:
分解:
l[n] = (c[2n]+c[2n+1])/2; n=0,1,...N/2-1
h[n] = c[2n]-c[2n+1]; n=0,1,...N/2-1
重构:
c[2n] = l[n]+h[n]/2);
c[2n+1] = l[n]-h[n]/2;
对图像进行处理,我们需要用到形态S+P变换的二维形式。那么,图像分解时可以先进行列变换,后进行行变换,得到ll,lh,hl,hh;
重构时,先进行行变换,后进行列变换,得到重构图像,最终实现完美重建!
参考文献:
[1] Amir Said. An Image Multiresolution Representation for Lossless and lossy Compression