偏微分方程中的边界值问题与自伴特征值问题
1. 进一步的边界值问题
在之前所讨论的边界值问题中,部分情况能够推导出或多或少明确的解。不过,带有弹性约束的波动方程问题是个例外,其解打破了标准傅里叶级数的模式。实际上,能进行明确解析求解的边界值问题只是少数,大多数情况下无法用初等函数进行明确计算。但前面使用的标准技术的核心思想,可应用于更一般类型的边界值问题。
目前所考虑的模型存在一个明显的局限性,即都基于所考虑区域内材料属性(如导电性、比热、密度、介电常数等)均匀的假设。若去掉这一假设,模型方程会相应修改。
1.1 三维可变介质的热传导方程模型
考虑在非均匀介质中的热传导,其特征由密度函数 (p(x,y,z))、比热函数 (c(x,y,z)) 和传导率函数 (\alpha(x,y,z)) 来描述。依据牛顿冷却定律(热从高温流向低温),从固体中取出一个光滑的材料体积 (V)。使 (V) 内热量的变化率等于穿过 (V) 的边界 (\partial V) 的净热通量,可得到:
(\frac{\partial}{\partial t}\iiint_{V}p(x,y,z)c(x,y,z)u(x,y,z,t)dV = \iint_{\partial S}\alpha(x,y,z)(\nabla u)\cdot n dS)
假设具有适当的可微性,利用散度定理(高斯定理)将曲面积分进行转换,由于 (V) 是任意的,得到控制方程:
(\frac{\partial}{\partial t}(pcu) - \nabla \cdot (\alpha \nabla u) = 0)
或者
(\frac{\partial}{\partia
超级会员免费看
订阅专栏 解锁全文
1959

被折叠的 条评论
为什么被折叠?



