思路:
- 有向图,边具有传递性。我们要找的是这样的点:这个点被其他所有的点所直接或传递指向,即这个点是所有牛所崇拜的。
- 通过对数据的观察,直接否决了暴力的可能性。因为要暴力传递性,所以至少要
n3
的复杂度。
- 首先我们考虑图中存在的强联通分量,对于强联通分量中的点,每个点都能通过传递性到达此联通分量中的任何一点,即可以将这个强联通分量视为一个点(缩点),而这个点的出边即连向其他的缩点。
- 考虑经过tarjan求强联通分量缩点之后的图,我们可以发现,这个图一定是有向无环图(如果其中的点大于1个),如果有环的话那么环中的点在trajan时肯定会被包括进去。
- 对于新图,所以我们现在需要做的就是统计出度为0的点,如果只有一个,那么这个点即是其他所有点所能到达的,我们输出这个点中包含的原来的点的个数就行了。如果有两个或以上出度为0的点,那么互相不可达,输出0。
- 考虑特殊情况,即缩点之后的图不能构成有向无环图的情况。即联通分量个数为1,所以就是一个联通图。输出n。
AC代码:
#include <iostream>
#include <cstdio>
#include <algorithm>
#include <string.h>
#include <vector>
using namespace std;
int ans;
const int maxn = 10100;
int head[maxn];
struct edge{
int to,v,next;
} edg[50100];
int cnte;
void addedge(int x,int y,int v){
edg[++cnte].to = y;
edg[cnte].v = v;
edg[cnte].next = head[x];
head[x] = cnte;
}
int cntn[maxn];
int dfn[maxn];
int low[maxn];
int stak[maxn];
int visstak[maxn];
int cntstak = 0;
int belong[maxn];
int out[maxn];
int index;
void tarjan(int u){
dfn[u] = low[u] = ++index;
stak[cntstak++] = u;
visstak[u] = 1;
for(int i = head[u]; i != -1;){
int v = edg[i].to;
if(!dfn[v]){
tarjan(v);
low[u] = min(low[u],low[v]);
}
else if(visstak[v]){
low[u] = min(low[u],dfn[v]);
}
i = edg[i].next;
}
if(dfn[u] == low[u]){
ans++;
int v;
do{
v = stak[--cntstak];
visstak[v] = 0;
belong[v] = ans;
cntn[ans]++;
}
while(v != u);
}
}
void ini(){
ans = 0;
cnte = 0;
index = 0;
cntstak = 0;
memset(head,-1,sizeof(head));
memset(low,0,sizeof(low));
memset(dfn,0,sizeof(dfn));
memset(cntn,0,sizeof(cntn));
}
int main(){
int n,m;
scanf("%d%d",&n,&m);
ini();
int a,b;
for(int i = 1; i <= m; i++){
scanf("%d%d",&a,&b);
addedge(a,b,1);
}
for(int i = 1; i <= n; i++){
if(dfn[i] == 0){
tarjan(i);
}
}
for(int i = 1;i <= n;i++){
for(int j = head[i];j != -1;j=edg[j].next){
if(belong[i] != belong[edg[j].to]){
out[belong[i]]++;
}
}
}
int flag,cnt = 0;
for(int i = 1;i <= ans;i++){
if(out[i] == 0){
cnt++;flag = i;
}
}
if(ans == 1){
printf("%d\n",n);
}
else if(cnt == 1){
printf("%d\n",cntn[flag]);
}
else{
puts("0");
}
return 0;
}