POJ 2186 Popular Cows Tarjan+缩点
题意:给定一个有向图,求有多少个顶点是任意顶点出发都可达的。
定理:有向无环图中唯一出度为0的点,一定可以由任何点出发均可达(由于无环所以从任何点出发往前走,必然终止于一个出度为0的点。)
思路:
1.求出所有的强连通分量(用tarjan()算法)
2.每个强连通分量缩成一点,则形成一个有向无环图DAG。
3.DAG上面如果有唯一的出度为0的点,则该点能被所有的点可达。那么该点所代表的连通分量上的所有的原图中的点,都能被原图中的所有点可达,则该连通分量的点数,就是答案。
4.DAG 上面如果有不止一个出度为0的点,则这些点互相不可达,原问题无解,答案为0。
缩点的时候不一定要构造新图,只要把不同强连通分量的点染成不同颜色,然后考察各种颜色的点有没有连到别的颜色的边即可(即其对应的缩点后的DAG图上的点是否有出边)。
#include<stdio.h>
#include<stdlib.h>
#include<iostream>
#include<algorithm>
#include<string.h>
#include<vector>
using namespace std;
const int maxn=10010;
int n,m;
int dfn[maxn],low[maxn],f[maxn],c[maxn],out0[maxn],sum[maxn];
int l=0,cnt=0,start=0;
vector<int>g[maxn];
void tarjan(int u)
{
dfn[u]=low[u]=++start;//开始时间
c[++l]=u;
for(int i=0;i<g[u].size();i++)
{
int v=g[u][i];
if(!dfn[v])
{
tarjan(v);
low[u]=min(low[u],low[v]);
}else if(!f[v])
{
low[u]=min(low[u],dfn[v]);
}
}
if(low[u]==dfn[u])//求出所有的连通分量,并将其染色,相同颜色的结点染上同一个颜色并且放在f数组中
// sum数组中存放强连通分量中的个数
{
int len=l;
cnt++;
while(c[l]!=u)
{
f[c[l--]]=cnt;
}
f[c[l--]]=cnt;
sum[cnt]=len-l;
//printf("len=%d,cnt=%d\n",len,cnt);
}
}
int main()
{
scanf("%d%d",&n,&m);
for(int i=1;i<=m;i++)
{
int x,y;
scanf("%d%d",&x,&y);
g[x].push_back(y);
}
memset(dfn,0,sizeof(dfn));
for(int i=1;i<=n;i++)
{
if(!dfn[i])
tarjan(i);
}
for(int i=1;i<=n;i++)
{
for(int j=0;j<g[i].size();j++)
{
int v=g[i][j];
if(f[i]!=f[v])//不在同一个连通分量里
out0[f[i]]++;//出度 +1
}
}
int ans=0;
for(int i=1;i<=cnt;i++)
{
if(!out0[i])//如果没有出度的话
{
if(ans>0)//如果多于一个,那么这些点也是互相不可达的,所以不合法,直接输出0即可
{
printf("0\n");
return 0;
}
ans=sum[i];// 这一支连通分量的个数
}
}
printf("%d",ans);//输出个数即可
return 0;
}