分类: 【OpenCV】
OpenCV提供FeatureDetector实现特征检测及匹配
- class CV_EXPORTS FeatureDetector
- {
- public:
- virtual ~FeatureDetector();
- void detect( const Mat& image, vector<KeyPoint>& keypoints,
- const Mat& mask=Mat() ) const;
- void detect( const vector<Mat>& images,
- vector<vector<KeyPoint> >& keypoints,
- const vector<Mat>& masks=vector<Mat>() ) const;
- virtual void read(const FileNode&);
- virtual void write(FileStorage&) const;
- static Ptr<FeatureDetector> create( const string& detectorType );
- protected:
- ...
- };
FeatureDetetor是虚类,通过定义FeatureDetector的对象可以使用多种特征检测方法。通过create()函数调用:
- Ptr<FeatureDetector> FeatureDetector::create(const string& detectorType);
OpenCV 2.4.3提供了10种特征检测方法:
- "FAST" – FastFeatureDetector
- "STAR" – StarFeatureDetector
- "SIFT" – SIFT (nonfree module)
- "SURF" – SURF (nonfree module)
- "ORB" – ORB
- "MSER" – MSER
- "GFTT" – GoodFeaturesToTrackDetector
- "HARRIS" – GoodFeaturesToTrackDetector with Harris detector enabled
- "Dense" – DenseFeatureDetector
- "SimpleBlob" – SimpleBlobDetector
图片中的特征大体可分为三种:点特征、线特征、块特征。
FAST算法是Rosten提出的一种快速提取的点特征
[1],Harris与GFTT也是点特征,更具体来说是角点特征(
参考这里)。
SimpleBlob是简单块特征,可以通过设置
SimpleBlobDetector的参数决定提取图像块的主要性质,提供5种:
颜色
By color、面积
By area、圆形度
By circularity、最大inertia (不知道怎么翻译)与最小inertia的比例
By ratio of the minimum inertia to maximum inertia、以及凸性
By convexity.
最常用的当属SIFT,尺度不变特征匹配算法(
参考这里);以及后来发展起来的SURF,都可以看做较为复杂的块特征。这两个算法在OpenCV nonfree的模块里面,需要在附件引用项中添加opencv_nonfree243.lib,同时在代码中加入:
- initModule_nonfree();
至于其他几种算法,我就不太了解了 ^_^
一个简单的使用演示:
- int main()
- {
- initModule_nonfree();//if use SIFT or SURF
- Ptr<FeatureDetector> detector = FeatureDetector::create( "SIFT" );
- Ptr<DescriptorExtractor> descriptor_extractor = DescriptorExtractor::create( "SIFT" );
- Ptr<DescriptorMatcher> descriptor_matcher = DescriptorMatcher::create( "BruteForce" );
- if( detector.empty() || descriptor_extractor.empty() )
- throw runtime_error("fail to create detector!");
- Mat img1 = imread("images\\box_in_scene.png");
- Mat img2 = imread("images\\box.png");
- //detect keypoints;
- vector<KeyPoint> keypoints1,keypoints2;
- detector->detect( img1, keypoints1 );
- detector->detect( img2, keypoints2 );
- cout <<"img1:"<< keypoints1.size() << " points img2:" <<keypoints2.size()
- << " points" << endl << ">" << endl;
- //compute descriptors for keypoints;
- cout << "< Computing descriptors for keypoints from images..." << endl;
- Mat descriptors1,descriptors2;
- descriptor_extractor->compute( img1, keypoints1, descriptors1 );
- descriptor_extractor->compute( img2, keypoints2, descriptors2 );
- cout<<endl<<"Descriptors Size: "<<descriptors2.size()<<" >"<<endl;
- cout<<endl<<"Descriptor's Column: "<<descriptors2.cols<<endl
- <<"Descriptor's Row: "<<descriptors2.rows<<endl;
- cout << ">" << endl;
- //Draw And Match img1,img2 keypoints
- Mat img_keypoints1,img_keypoints2;
- drawKeypoints(img1,keypoints1,img_keypoints1,Scalar::all(-1),0);
- drawKeypoints(img2,keypoints2,img_keypoints2,Scalar::all(-1),0);
- imshow("Box_in_scene keyPoints",img_keypoints1);
- imshow("Box keyPoints",img_keypoints2);
- descriptor_extractor->compute( img1, keypoints1, descriptors1 );
- vector<DMatch> matches;
- descriptor_matcher->match( descriptors1, descriptors2, matches );
- Mat img_matches;
- drawMatches(img1,keypoints1,img2,keypoints2,matches,img_matches,Scalar::all(-1),CV_RGB(255,255,255),Mat(),4);
- imshow("Mathc",img_matches);
- waitKey(10000);
- return 0;
- }
特征检测结果如图:
Box_in_scene
Box
特征点匹配结果:
Match
另一点需要一提的是
SimpleBlob的实现是有Bug的。不能直接通过 Ptr<FeatureDetector> detector = FeatureDetector::create("SimpleBlob"); 语句来调用,而应该直接创建
SimpleBlobDetector的对象:
- Mat image = imread("images\\features.jpg");
- Mat descriptors;
- vector<KeyPoint> keypoints;
- SimpleBlobDetector::Params params;
- //params.minThreshold = 10;
- //params.maxThreshold = 100;
- //params.thresholdStep = 10;
- //params.minArea = 10;
- //params.minConvexity = 0.3;
- //params.minInertiaRatio = 0.01;
- //params.maxArea = 8000;
- //params.maxConvexity = 10;
- //params.filterByColor = false;
- //params.filterByCircularity = false;
- SimpleBlobDetector blobDetector( params );
- blobDetector.create("SimpleBlob");
- blobDetector.detect( image, keypoints );
- drawKeypoints(image, keypoints, image, Scalar(255,0,0));
[1] Rosten. Machine Learning for High-speed Corner Detection, 2006