python 计算缺失值个数以及缺失率

本文介绍了使用Python的pandas库进行Excel数据处理的方法,包括读取数据、计算表格行列数、查找缺失值、计算缺失值个数及缺失率等关键操作。通过具体示例,展示了如何高效地进行数据预处理和分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


import os
import pandas as pd

os.chdir(r"D:\pycharm程序文件\练习1")
data = pd.read_excel("data.xlsx")

# 计算表格行列数
print(data.shape)
print(data.shape[0]) # 计算行的个数

# 查看某 一/多 列的缺失值isnull()
print(data['被保险人年龄'].isnull())

# 计算每一列缺失值个数 info(); 输出非空值non-null的个数及数据类型
print(data.info())

# 查看两列非空值个数及数据类型data[['列1','列2']].info()
print(data[['风险类别(A最低,E最高)','被保险人年龄']].info())

# 查看某一列非空值个数data[['列1']].info()
print(data[['风险类别(A最低,E最高)']].info())

# info()不支持series类型, 所以不能用data['列1'].info()

"""
(1)

找不到直接计算空值行数的方法
利用加减法计算缺失值个数及缺失率
1. 先用count()计算出行数(列非空值的行数); count(axis=1)是计算列数的. 默认axis=0
2. shape[0]计算出总行数

"""
missing_value = data['风险类别(A最低,E最高)'].shape[0] -  data['风险类别(A最低,E最高)'].count()
missing_rate = missing_value/data['风险类别(A最低,E最高)'].shape[0]
print("missing_value = %d"%missing_value)
print('missing_rate = {}'.format(missing_rate))
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值