104、Python数据清洗利器:缺失值与重复项处理技巧

本文详述了Python中处理数据清洗的关键步骤,包括缺失值的删除和填充,以及重复项的识别与处理。通过Pandas库,可以方便地执行这些操作,提升数据分析的准确性和可靠性。
摘要由CSDN通过智能技术生成

Python开发之数据清洗:处理缺失值和重复项

在现实世界的数据中,很少有完整、准确、一致的数据集。因此,数据清洗成为数据分析和机器学习领域中一个非常重要的步骤。本篇文章将重点介绍如何在Python中处理数据清洗中的两个主要问题:缺失值和重复项。

1. 缺失值处理

在数据收集和存储过程中,由于各种原因,部分数据可能会丢失。这些丢失的数据通常用空值(null值)表示。处理缺失值是数据清洗的重要任务之一。

1.1 应用场景

假设我们有一个关于用户购买行为的 dataset,其中包含了用户ID、购买日期、购买商品等信息。由于某些原因,部分用户的购买日期可能丢失。在这种情况下,我们需要对缺失值进行处理,以便后续的数据分析。

1.2 处理技巧和案例

  1. 删除缺失值:如果数据集非常大,丢失的数据只占一小部分,可以考虑直接删除含有缺失值的行或列。
    import pandas as pd
    # 创建一个含有缺失值的DataFrame
    df = pd.DataFrame({
         
        '用户ID': [1, 2, 3, 4, 5],
        '购买日期': [None, '2021-01-01', '2021-01-02', '2021-01-03', '2021-01-04'],
        '购买商品': ['商品A', '商品B', '商品C', '商品D', '商品E']
    })
    # 删除含有缺失值的行
    df_dropna = df.dropna(subset=['购买日期'])
    
  2. 填充缺失值:如果删除缺失值会导致数据丢失过多信息,可以考虑用其他值填充缺失值。例如,可以用平均值、中位数、众数等填充。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值