Python开发之数据清洗:处理缺失值和重复项
在现实世界的数据中,很少有完整、准确、一致的数据集。因此,数据清洗成为数据分析和机器学习领域中一个非常重要的步骤。本篇文章将重点介绍如何在Python中处理数据清洗中的两个主要问题:缺失值和重复项。
1. 缺失值处理
在数据收集和存储过程中,由于各种原因,部分数据可能会丢失。这些丢失的数据通常用空值(null值)表示。处理缺失值是数据清洗的重要任务之一。
1.1 应用场景
假设我们有一个关于用户购买行为的 dataset,其中包含了用户ID、购买日期、购买商品等信息。由于某些原因,部分用户的购买日期可能丢失。在这种情况下,我们需要对缺失值进行处理,以便后续的数据分析。
1.2 处理技巧和案例
- 删除缺失值:如果数据集非常大,丢失的数据只占一小部分,可以考虑直接删除含有缺失值的行或列。
import pandas as pd # 创建一个含有缺失值的DataFrame df = pd.DataFrame({ '用户ID': [1, 2, 3, 4, 5], '购买日期': [None, '2021-01-01', '2021-01-02', '2021-01-03', '2021-01-04'], '购买商品': ['商品A', '商品B', '商品C', '商品D', '商品E'] }) # 删除含有缺失值的行 df_dropna = df.dropna(subset=['购买日期'])
- 填充缺失值:如果删除缺失值会导致数据丢失过多信息,可以考虑用其他值填充缺失值。例如,可以用平均值、中位数、众数等填充。