df.where np.where 与applymap的应用

这篇博客介绍了Pandas中用于条件替换的几个方法,包括df.where()、df.mask()、np.where()以及直接使用df.loc[]。详细解释了这些方法如何根据指定条件替换DataFrame中的值,如将False值替换为1000,以及按条件更新特定列。同时,还探讨了applymap()函数在逐元素应用条件操作中的应用。
摘要由CSDN通过智能技术生成
import pandas as pd
impodt numpy  as np
替换
①df.where:替换不满足条件的值
②df.mask :替换满足条件的值
③np.where:替换满足条件的值
④df.loc[条件,列名]=替换的值
df.where('cond', 'other', inplace=False)
df.mask('cond','other',inplace=False)
cond:条件
other:需要替换的值
inplace:是否在原有的数据上进行替换
where 与mask 相反 
np.where(条件,原来的数据,需要替换的数据)

df = pd.DataFrame({'AAA': [4, 5, 6, 7],
   'BBB': [10, 20, 30, 40],
   'CCC': [100, 50, -30, -50]})
df
AAA BBB CCC
0 4 10 100
1 5 20 50
2 6
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值