倒计时240天!泰勒!!!

已经进入倒计时了,最后的240天!我决不会在此倒下!

              我有着自己的遗憾,也怀念过去的日子,现在只有把握好每一天,我行的!

今天看了一下的泰勒,毕竟也是考点的重难点。

首先看看泰勒的展开式:f\left ( x \right )=f\left ( x_{0} \right )+f{}'\left ( x_{0} \right )\left ( x-x_{0} \right )+f{}''\left ( \xi \right )\frac{1}{2!}\left ( x-x_{0} \right )^{2}

且该属于x,与x0之间(这句话一定要写)

这个泰勒不是十分标准的泰勒,因为这个泰勒是带有余项的一阶泰勒公式,且该值是在x0处展开,一阶泰勒公式就展开到了两阶。

而常见的有个术语叫做麦克劳林公式,也就是将x0等于0带入方程,也就是fx在0处展开。

还有个术语叫做佩亚诺余项和拉格朗日余项,这个就是fx展开的最后一项,我们就用余项来表示,通常该值不是x0了而是专门用一个介于x与x0之间的\xi表示。

在这里,我也碰到两道题目,也总结一定规律:为什么可以用泰勒?如何用?

直接上我发现的:题干中一般会出现“该函数在区间...内有二阶导数”,“f0=...,f的二阶导大于0”

其实最最重要的还是前面一部分,具有二阶导数,应该想到泰勒。

怎么用?:最好的就是把泰勒在x0处展开处,将x(不是x0,这个很容易搞混)等于题目中所提示的条件带入,或者x0在题目中所给条件展开。

设函数fx在区间(0,2)内具有二阶导数,且f\left ( 1 \right )=0,f{}''\left ( x \right )> 0

1,求fx在x0处带拉格朗日余项的一阶泰勒公式,并证明:f\left ( x \right )\leq f{}'\left ( x \right )\left ( x-1 \right )

题目给的条件很少,之前我看到二阶导大于零,都想到了一阶导单调递增,现在得改改了,还可以利用泰勒。

首先前面的展开就不多赘述了,默写公式嘛。

直接看证明 :f\left ( 1 \right )=f\left ( x_{0} \right )+f{}'\left ( x_{0} \right )\left ( 1-x_{0} \right )+\frac{1}{2}f{}''\left ( \xi \right )\left ( 1-x_{0} \right )^{2}=0

                    之后就是找题干中的条件,因为二阶导大于0,乘了个平方,照样大于0,从而前面一部分就是小于0 ,也刚好符合要证明式子的样子,之后便是移项...变号....得证.....

设fx在(0,1)上具有二阶导数,且fx的二阶导小于0,证明:\int_{0}^{1}f\left ( x \right )dx\leq f\left ( \frac{1}{2} \right )

一看开条件更少了....只有二阶导小于0.....但没关系,我们知道题目,很有可能在暗示我们要使用泰勒公式。 怎么展开?还是在x0处?不应该吧,要证明的式子是二分之一,那为什么我们不在二分之一处展开呢?

f\left ( x \right )=f\left ( \frac{1}{2} \right )+f{}'\left ( \frac{1}{2} \right )\left ( x-\frac{1}{2} \right )+\frac{1}{2}f{}''\left ( \xi \right )\left ( x-\frac{1}{2} \right )^{2}

f\left ( x \right )-f\left ( \frac{1}{2} \right )=f{}'\left ( \frac{1}{2} \right )\left ( x-\frac{1}{2} \right )+\frac{1}{2}f{}''\left ( \xi \right )\left ( x-\frac{1}{2} \right )^{2}

\because f{}''\left ( x \right )< 0

\thereforef\left ( x \right )-f\left ( \frac{1}{2} \right )\leq f{}'\left ( \frac{1}{2} \right )\left ( x-\frac{1}{2} \right )

\int_{0}^{1}f\left ( x \right )-f\left ( \frac{1}{2} \right )dx\leq \int_{0}^{1}f{}'\left ( \frac{1}2{} \right )\left ( x-\frac{1}{2} \right )dx

\int_{0}^{1}f\left ( x \right )-f\left ( \frac{1}{2} \right )dx\leq 0

之后便是移项...化简....得证......

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值