Street Gaussians 学习笔记

目录

3D Gaussian Splatting

依赖项:

diff-gaussian-rasterization


浙大和理想汽车提出Street Gaussians:用于动态城市场景建模

3D Gaussian Splatting

最近的一项工作3D Gaussian Splatting (3D GS),在3D世界中定义了一组各向异性的高斯核,并执行自适应密度控制,以仅使用稀疏的点云输入实现高质量的渲染结果。我们可以把3DGS理解成介于volume-based和point-based的中间态,所有同时拥有volume-based方法的高质量,也拥有point-based方法的高效率。然而,3DGS假定场景是静态的,不能模拟动态移动的对象。

Street Gaussians

介绍:

https://zhuanlan.zhihu.com/p/675891808

github地址:

GitHub - zju3dv/street_gaussians: [ECCV 2024] Street Gaussians: Modeling Dynamic Urban Scenes with Gaussian Splatting

依赖项:

simple_knn

项目给了源代码:street_gaussians/submodules/simple-knn

安装:python setup.py install

diff-gaussian-rasterization

项目给了源代码:street_gaussians/submodules/diff-gaussian-rasterization

安装:python setup.py install

Conditional Gaussians是指在给定一个或多个随机变量的条件下,另一个随机变量的概率分布仍然是高斯分布。这意味着在已知一些变量的值的情况下,我们可以通过条件高斯分布来推断其他变量的概率分布。 对于两个变量集合xa和xb,如果它们共同符合高斯分布,那么每个单一变量的条件分布p(a|b)和边缘分布p(a)都是符合高斯分布的。这意味着在已知变量xb的值的情况下,变量xa的概率分布仍然是高斯分布。 通过使用矩阵变换的性质,我们可以计算出conditional Gaussians的期望和协方差。这些计算方法可以通过多种方式进行,但都涉及到矩阵变换。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [浙江大学人工智能课程课件](https://download.csdn.net/download/qq_35653660/10792529)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] - *2* *3* ["模式识别与机器学习"读书笔记——2.3(2)](https://blog.csdn.net/weixin_34192816/article/details/85492398)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_2"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI算法网奇

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值