n介导plus!,高阶导数求法又增加了

我曾经的n介导的经历

   上面是我曾经在n介导求导的一个例子,如今呢,我又碰到了相关了列题,也是求n介导,其中的方法也是我曾经有印象的,但很可惜,当初还没接触csdn,没在上面记下来。

  现在呢,该记下来了

上题目:y=\frac{x^{n}}{1-x},求n介导

有两种方法可以解决它

第一种,也是我一开始记得这种方法,可惜随着时间的流逝,历年考试也没怎么考到,有点淡忘这种方法了,还好如今碰到这道题了,让我想起来了。

看到该题目的型式,其中分子的次数比分母次数大,我们称它为假分式,而假分式可以通过一定手段一定可以变成真分式,而真分式求导就有一定规律可循。第一题我们就用假分式来处理。

我们通过分子    -x^{n-1}+x^{n+1}   以保持不变,然后再提出一个x^{n-1}来对分母进行约分,这时候分子就剩下一个x^{n-1},以此类推,我们对分子再进行加数减数,到最后变成一个真分式,即

                 -\left ( x^{n-1}+x^{n-2}+x^{n-3}+.....+1 \right )+\frac{1}{1-x}

因为我们是对它进行的n介导,很显然前面的0,但如果是n-1次导前面就是n-1的阶层,再看看后面是\frac{1}{1-x},我们知道它的n介导,再不行我们也可以对它找规律,所以

y^{n}=\left ( \frac{1}{1-x} \right )^{n}=\frac{\left ( -1 \right )^{n}n!}{\left ( 1-x\right )^{n+1}}

第二种,我们用因式分解来求解决

首先我们得知道高阶的因式分解的化简方式:

 这个就是n次的因式分解型式,接下来很简单,就是分子加一减一然后进行对前面的进行因式分解,后面单独拎出来进行考虑,之后也会变成-\left ( x^{n-1}+x^{n-2}+x^{n-3}+.....+1 \right )+\frac{1}{1-x}这样的型式,之后答案是一样的y^{n}=\left ( \frac{1}{1-x} \right )^{n}

                                                  =\frac{\left ( -1 \right )^{n}n!}{\left ( 1-x\right )^{n+1}}

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值