题意:
给定n组数,给定4个集合 abcd 每组数中第一个数为a集合,第二个数为b集合.....
求从每个集合中取出一个数,有多少种取的方法使其和为0(必须每个集合取一个)
思路:
简单的暴力一定会超时,时间复杂度为n的4次方
正确的思路为
ab集合的全部组合情况全部先列出来
cd集合的全部组合情况也列出来
排个序
然后对于ab组合的全部情况
在cd组合的情况中用二分查找找出来
注意!
要找出cd组合中符合条件的全部情况,不能只找一个
upper_bound lower_bound
这两个函数,返回值为相应的指针(实际上是迭代器,但是理解很麻烦)
如果需要找到位置,那么只要用指针减去数组的头指针就行了
lower_bound(数组开头,数组结尾,需要查找的数)
其实和sort的用法差不多
lower_bound(num,num+n,k) ----num为存储的数组,里面共有n个数
binary_search 直接返回一个bool型,用来判断该数是否存在
这道题目前用不到
#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn=16000010;
const int maxnn=4010;
int sum0[maxn],sum1[maxn];
int a[maxn],b[maxnn],c[maxnn],d[maxnn];
int main()
{
int n;
scanf("%d",&n);
for(int i=1;i<=n;i++)
{
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
}
int len0=0;
int len1=0;
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
sum0[++len0]=a[i]+b[j];
}
}
for(int i=1;i<=n;i++)
{
for(int j=1;j<=n;j++)
{
sum1[++len1]=c[i]+d[j];
}
}
sort(sum0+1,sum0+1+len0);
sort(sum1+1,sum1+1+len1);
int ans=0;
for(int i=1;i<=len0;i++)
{
int k=-sum0[i];
ans+=upper_bound(sum1+1,sum1+1+len1,k)-lower_bound(sum1+1,sum1+1+len1,k);
}
printf("%d\n",ans);
}