POJ-2785-4 Values whose Sum is 0(二分函数)

题目链接

题意:

给定n组数,给定4个集合  abcd   每组数中第一个数为a集合,第二个数为b集合.....

求从每个集合中取出一个数,有多少种取的方法使其和为0(必须每个集合取一个)


思路:

简单的暴力一定会超时,时间复杂度为n的4次方

正确的思路为

ab集合的全部组合情况全部先列出来

cd集合的全部组合情况也列出来

排个序

然后对于ab组合的全部情况

在cd组合的情况中用二分查找找出来

注意!

要找出cd组合中符合条件的全部情况,不能只找一个

upper_bound   lower_bound   

二分查找函数

这两个函数,返回值为相应的指针(实际上是迭代器,但是理解很麻烦)

如果需要找到位置,那么只要用指针减去数组的头指针就行了

lower_bound(数组开头,数组结尾,需要查找的数)

其实和sort的用法差不多

lower_bound(num,num+n,k)      ----num为存储的数组,里面共有n个数

binary_search 直接返回一个bool型,用来判断该数是否存在

这道题目前用不到

#include<stdio.h>
#include<algorithm>
#include<string.h>
using namespace std;
const int maxn=16000010;
const int maxnn=4010;
int sum0[maxn],sum1[maxn];
int a[maxn],b[maxnn],c[maxnn],d[maxnn];
int main()
{
    int n;
    scanf("%d",&n);
    for(int i=1;i<=n;i++)
    {
        scanf("%d%d%d%d",&a[i],&b[i],&c[i],&d[i]);
    }
    int len0=0;
    int len1=0;
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            sum0[++len0]=a[i]+b[j];
        }
    }
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            sum1[++len1]=c[i]+d[j];
        }
    }
    sort(sum0+1,sum0+1+len0);
    sort(sum1+1,sum1+1+len1);
    int ans=0;
    for(int i=1;i<=len0;i++)
    {
        int k=-sum0[i];
        ans+=upper_bound(sum1+1,sum1+1+len1,k)-lower_bound(sum1+1,sum1+1+len1,k);
    }
    printf("%d\n",ans);
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值