深度强化学习的随机潜在空间探索
原标题: Random Latent Exploration for Deep Reinforcement Learning
作者: Srinath Mahankali, Zhang-Wei Hong, Ayush Sekhari, Alexander Rakhlin, Pulkit Agrawal
机构: 清华大学 谷歌
摘要: 在深度强化学习的实际成功中,高效地探索高维状态空间的能力至关重要。本文介绍了一种名为随机潜在探索(RLE)的新探索技术,它结合了基于奖励和基于噪声的两种流行的深度强化学习中有效探索的策略的优势。RLE利用了在环境的某些(随机)状态下通过向原始任务奖励添加结构化随机奖励来扰动奖励的想法,以鼓励智能体在训练过程中探索环境。RLE易于实现,并在实践中表现良好。为了展示RLE的实际有效性,我们在具有挑战性的Atari和IsaacGym基准测试上对其进行评估,并展示RLE在所有任务中表现出比其他方法更高的整体得分。
论文链接: https://arxiv.org/abs/2407.13755
具有更强一致性保证的多标签学习
原标题: Multi-Label Learning with Stronger Consistency Guarantees
作者: Anqi Mao, Mehryar Mohri, Yutao Zhong
机构: 纽约大学 数学科学研究所 谷歌研究
摘要: 我们提出了一个关于多标签学习的替代损失和算法的详细研究,支持 H H H-一致性界限。我们首先展示了,对于最简单形式的多标签损失(流行的汉明损失),众所周知的一致性二进制相关替代在使用诸如逻辑损失这样的平滑损失时,在 H H H-一致性界限方面对标签数量存在次优依赖。此外,这种损失函数未能考虑标签之间的相关性。为了解决这些缺点,我们引入了一种新的替代损失,多标签逻辑损失,考虑了标签之间的相关性,并从独立于标签的 H H H-一致性界限中获益。然后,我们扩展我们的分析,涵盖更广泛的多标签损失家族,包括所有常见的损失和基于混淆矩阵的线性分数函数定义的新扩展。我们还将我们的多标签逻辑损失扩展到更全面的多标签comp-sum损失,将标准分类中的comp-sum损失调整为多标签学习。我们证明了这种替代损失家族从 H H H-一致性界限中获益,因此在任何一般的多标签损失中都具有贝叶斯一致性。因此,我们的工作提出了一个统一的替代损失框架,为任何多标签损失提供了强大的一致性保证,显著扩展了之前仅建立贝叶斯一致性和特定损失函数的工作。此外,我们以类似的方式将标准分类中的约束损失调整为多标签约束损失,这也从 H H H-一致性界限中获益,因此在任何多标签损失中具有贝叶斯一致性。我们进一步描述了用于最小化多标签逻辑损失的高效梯度计算算法。
论文链接: https://arxiv.org/abs/2407.13746
乐观的 Q-learning 用于平均奖励和情节性强化学习
原标题: Optimistic Q-learning for average reward and episodic reinforcement learning
作者: Priyank Agrawal, Shipra Agrawal
机构: 哥伦比亚大学
摘要: 我们提出了一种乐观的 Q-learning 算法,用于在对底层 MDP 的一个额外假设下进行平均奖励强化学习中的遗憾最小化,即对于所有策略,访问某个频繁状态 s 0 s_0 s0 的期望时间是有限的,并且上界为 H H H。我们的设置严格泛化了周期性设置,并且比大多数先前关于平均奖励设置中无模型算法的文献中对所有状态的有界击中时间的假设要宽松得多。我们展示了一个遗憾上界为 O ~ ( H 5 S A T ) \tilde{O}(H^5 S\sqrt{AT}) O~(H5SAT),其中 S S S 和 A A A 分别是状态和动作的数量, T T T 是时间跨度。我们工作的一个关键技术创新是引入一个被定义为 L ‾ v = 1 H ∑ h = 1 H L h v \overline{L} v = \frac{1}{H} \sum_{h=1}^H L^h v Lv=H1∑h=1HLhv 的 L ‾ \overline{L} L 操作符,其中 L L L 表示 Bellman 操作符。我们展示了在给定假设下, L ‾ \overline{L} L 操作符即使在平均奖励设置中也具有严格的收缩(在范围内)。我们的算法设计然后使用周期性 Q-learning 的思想来迭代地估计和应用这个操作符。因此,我们提供了一个关于周期性和非周期性设置中遗憾最小化的统一视角,这可能是独立感兴趣的。
论文链接: https://arxiv.org/abs/2407.13743
物理引导的主动样本重新加权用于城市流量预测
原标题: Physics-guided Active Sample Reweighting for Urban Flow Prediction
作者: Wei Jiang, Tong Chen, Guanhua Ye, Wentao Zhang, Lizhen Cui, Zi Huang, Hongzhi Yin
机构: 昆士兰大学 北京邮电大学 北京大学 山东大学
摘要: 城市流量预测是一个时空建模任务,用于估计公交车、出租车和顺风车等交通服务的吞吐量,在过去十年中,基于数据驱动模型已成为最流行的解决方案。与此同时,历史观测到预测目标之间隐式学习的映射往往会过度简化现实世界城市流量的动态,导致预测不够优化。一些最近的时空预测解决方案通过物理引导的机器学习(PGML)概念提出了补救措施,用细致和原则性的物理定律描述时空数据,从而提高了预测准确性和可解释性。然而,这些时空PGML方法建立在一个强假设之上,即观测数据完全符合定义物理系统的微分方程,这在城市流量预测任务中很快就会变得不适用。观测到的城市流量数据,特别是在切片为便于预测的依赖时间的快照时,通常是不完整和稀疏的,并且容易受到采集过程中产生的固有噪声的影响。因此,数据与PGML模型之间的这种物理不一致显著限制了解决方案的预测能力和鲁棒性。此外,由于许多交通服务基于间隔的预测和数据填充的间歇性特性,城市流量的瞬时动态几乎无法被捕捉,使得基于微分方程的连续建模对这种情境来说并不合适。为了克服这些挑战,我们开发了一个离散化的物理引导网络(PN),并提出了一个数据感知框架物理引导主动样本重新加权(P-GASR)来增强PN。在四个真实世界数据集上的实验结果表明,我们的方法在提高鲁棒性的同时实现了最先进的性能。
论文链接: https://arxiv.org/abs/2407.13605
机械解释基于Transformer的2-SAT求解器:一种公理化方法
原标题: Mechanistically Interpreting a Transformer-based 2-SAT Solver: An Axiomatic Approach
作者: Nils Palumbo, Ravi Mangal, Zifan Wang, Saranya Vijayakumar, Corina S. Pasareanu, Somesh Jha
机构: 威斯康星大学麦迪逊分校 卡内基梅隆大学 AI安全中心
摘要: 机械解释性旨在通过神经网络的内部组件来逆向工程计算过程。尽管关于神经网络机械解释的研究日益增多,但机械解释本身的概念通常是临时的。受程序分析文献中旨在为程序开发近似语义的抽象解释概念的启发,我们提出了一组公理,正式地将机械解释特征化为一种以组合方式近似捕捉神经网络语义的描述。我们利用这些公理来指导对基于Transformer模型训练的解决著名2-SAT问题的模型的机械解释性分析。我们成功地逆向工程了模型学习到的算法–模型首先解析输入公式,然后通过枚举布尔输入变量的不同可能赋值来评估它们的可满足性。我们还提供证据支持,表明所分析模型的机械解释确实满足所述的公理。
论文链接: https://arxiv.org/abs/2407.13594
学习推迟的可实现 H H H一致和贝叶斯一致的损失函数
原标题: Realizable H H H-Consistent and Bayes-Consistent Loss Functions for Learning to Defer
作者: Anqi Mao, Mehryar Mohri, Yutao Zhong
机构: 纽约大学 康朗数学科学研究所 谷歌研究
摘要: 我们提出了一个关于学习延迟的替代损失函数的全面研究。我们引入了一个广泛的替代损失函数家族,由非递增函数 Ψ \Psi Ψ 参数化,并在温和条件下建立了它们的可实现 H H H-一致性。对于基于分类错误的成本函数,我们进一步展示了当假设集是对称和完备的时,这些损失函数具有 H H H-一致性界限,这是常见的神经网络和线性函数假设集所满足的属性。我们的结果还解决了先前工作中提出的一个未决问题(Mozannar 等人,2023年),通过证明了特定替代损失的可实现 H H H-一致性和贝叶斯一致性。此外,我们确定了 Ψ \Psi Ψ 的选择,这些选择可以导致任何一般成本函数的 H H H-一致替代损失,从而同时实现贝叶斯一致性、可实现 H H H-一致性和 H H H-一致性界限。我们还调查了在学习延迟中 H H H-一致性界限和可实现 H H H-一致性之间的关系,突出了与标准分类的关键差异。最后,我们对我们提出的替代损失进行了实证评估,并将它们与现有基准进行了比较。
论文链接: https://arxiv.org/abs/2407.13732
EnergyDiff:使用扩散模型生成通用时间序列能源数据
原标题: EnergyDiff: Universal Time-Series Energy Data Generation using Diffusion Models
作者: Nan Lin, Peter Palensky, Pedro P. Vergara
机构: IEEE 学生会员,IEEE 高级会员,IEEE 高级会员
摘要: 高分辨率的时间序列数据对于能源系统(如电力系统和供暖系统)的运行和规划至关重要。然而,由于数据收集成本和隐私问题,这些数据通常无法获取或不足以支持下游任务。数据合成是解决数据稀缺性问题的潜在方法。随着生成式人工智能的最新发展,我们提出了EnergyDiff,这是一个针对能源时间序列数据的通用数据生成框架。EnergyDiff基于最先进的去噪扩散概率模型,利用了专门用于高分辨率时间序列数据的去噪网络,并引入了一种新颖的边际校准技术。我们广泛的实验结果表明,与基线相比,EnergyDiff在捕捉时间依赖性和边际分布方面取得了显著改进,特别是在1分钟分辨率下。此外,EnergyDiff在不同能源领域、时间分辨率以及客户和变压器级别上持续生成高质量的时间序列数据,同时降低了计算需求。
论文链接: https://arxiv.org/abs/2407.13538
增强的 H H H-一致性界限
原标题: Enhanced H H H-Consistency Bounds
作者: Anqi Mao, Mehryar Mohri, Yutao Zhong
机构: 纽约大学 康朗数学科学研究所 谷歌研究
摘要: 最近的研究引入了关于替代损失函数的 H H H-一致性边界的关键概念。这些边界提供了有限样本保证,量化了零一估计误差(或其他目标损失)与特定假设集的替代损失估计误差之间的关系。然而,先前的边界是在给定替代损失条件遗憾的下限作为目标条件遗憾的凸函数,且没有依赖于预测器或输入实例的非常数因子的条件下推导的。我们能否推导出更精细和更有利的 H H H-一致性边界?在这项工作中,我们放宽了这个条件,并提出了一个建立增强 H H H-一致性边界的通用框架,该框架基于更一般的关于条件遗憾的不等式。我们的定理不仅将现有结果作为特例包含在内,还能够在各种情景下推导出更有利的边界。这些情景包括标准多类分类、在Tsybakov噪声条件下的二元和多类分类,以及二分排名。
论文链接: https://arxiv.org/abs/2407.13722
在 RecBole 和 LensKit 中评估 itemKNN 的性能偏差
原标题: Evaluating the performance-deviation of itemKNN in RecBole and LensKit
作者: Michael Schmidt, Jannik Nitschke, Tim Prinz
机构: 西格根大学 LensKit RecBole
摘要: 这项研究考察了在 RecBole 和 LensKit 推荐系统库中基于物品的 k-最近邻(ItemKNN)算法的性能。使用四个数据集(Anime、Modcloth、ML-100K 和 ML-1M),我们评估了每个库的效率、准确性和可扩展性,主要关注归一化折现累积增益(nDCG)。我们的结果显示,在 ML-100K 数据集上,RecBole 在三个指标中的两个上优于 LensKit:它实现了比 LensKit 更高 18% 的 nDCG,更高 14% 的精确度,以及更低 35% 的召回率。为了确保公平比较,我们调整了 LensKit 的 nDCG 计算以匹配 RecBole 的方法。这种调整使性能更具可比性,LensKit 实现了 0.2540 的 nDCG,RecBole 实现了 0.2674。相似矩阵计算的差异被确定为性能偏差的主要原因。在修改 LensKit 以保留仅前 K 个相似项后,两个库在所有数据集上显示出几乎相同的 nDCG 值。例如,在具有相同随机种子的情况下,两者在 ML-1M 数据集上均实现了 0.2586 的 nDCG。最初,LensKit 的原始实现仅在 ModCloth 数据集中超过了 RecBole。
论文链接: https://arxiv.org/abs/2407.13531
讨论:通过训练稀疏线性专家混合模型实现有效且可解释的结果预测
原标题: Discussion: Effective and Interpretable Outcome Prediction by Training Sparse Mixtures of Linear Experts
作者: Francesco Folino, Luigi Pontieri, Pietro Sabatino
机构: 意大利高性能计算与网络研究所(ICAR-CNR)
摘要: 过程结果预测涉及从部分跟踪中预测未完成过程实例的离散属性。通过集成和深度学习方法发现的高容量结果预测器已被证明能够实现最高准确性性能,但它们缺乏透明度。与最近努力学习固有可解释结果预测器的努力一致,我们提出训练一个稀疏的专家混合模型,其中“门”和“专家”子网络都是逻辑回归器。这种类似集成的模型是端到端训练的,同时在每个子网络中自动选择一组输入特征,作为在模型训练之前执行全局特征选择步骤的替代方法。基准日志的测试结果证实了这种方法的有效性和功效。
论文链接: https://arxiv.org/abs/2407.13526
INDIC QA基准:一个多语言基准,用于评估大语言模型在印度语言问答能力方面的表现。
原标题: INDIC QA BENCHMARK: A Multilingual Benchmark to Evaluate Question Answering capability of LLMs for Indic Languages
作者: Abhishek Kumar Singh, Rudra Murthy, Vishwajeet kumar, Jaydeep Sen, Ganesh Ramakrishnan
机构: 印度孟买理工学院 IBM研究
摘要: 大语言模型(LLMs)已经展示出在未见过的任务中具有显著的零样本和少样本能力,包括英语中基于上下文的问答(QA)。然而,对于非英语语言中基于上下文的问答,LLMs 能力的评估受到非英语语言基准数据稀缺的限制。为了填补这一空白,我们引入了 Indic-QA,这是最大的公开可用的基于上下文的问答数据集,涵盖了来自两个语言家族的 11 种主要印度语言。该数据集包括抽取式和生成式问答任务,包括现有数据集以及将英语 QA 数据集翻译成印度语言。此外,我们使用 Gemini 模型生成了一个合成数据集,用于创建给定段落的问答对,然后进行手动验证以确保质量。我们在基准测试中评估了各种多语言大语言模型及其经过指导微调的变体,观察到它们的性能不佳,特别是对于资源稀缺的语言。我们希望发布这一数据集将促进对于低资源语言的问答能力研究的进一步开展。
论文链接: https://arxiv.org/abs/2407.13522
高维学习中的非渐近不确定性量化
原标题: Non-Asymptotic Uncertainty Quantification in High-Dimensional Learning
作者: Frederik Hoppe, Claudio Mayrink Verdun, Hannah Laus, Felix Krahmer, Holger Rauhut
机构: 亚琛工业大学 哈佛大学 慕尼黑工业大学 慕尼黑大学LMU
摘要: 不确定性量化(UQ)是许多高维回归或学习问题中的一个关键但具有挑战性的任务,旨在提高给定预测器的置信度。我们开发了一种新的数据驱动方法,用于回归中的UQ,适用于经典回归方法(如LASSO)以及神经网络。最显著的UQ技术之一是去偏LASSO,它修改了LASSO以允许通过将估计误差分解为高斯和渐近消失偏差组件来构建渐近置信区间。然而,在具有有限维数据的实际问题中,偏差项通常太重要而不能被忽略,导致置信区间过窄。我们的工作严格解决了这个问题,并通过从训练数据中估计偏差项的均值和方差,利用高维集中现象,推导出了一种数据驱动的调整,纠正了大类预测器的置信区间,从而产生非渐近置信区间,有助于避免在MRI诊断等关键应用中高估不确定性。重要的是,我们的分析不仅适用于稀疏回归,还适用于神经网络等数据驱动预测器,增强了基于模型的深度学习的可靠性。我们的发现弥合了已建立理论与这种去偏方法的实际适用性之间的差距。
论文链接: https://arxiv.org/abs/2407.13666
使用符号世界模型的基于模型的策略优化
原标题: Model-based Policy Optimization using Symbolic World Model
作者: Andrey Gorodetskiy, Konstantin Mironov, Aleksandr Panov
机构: 莫斯科物理技术学院 人工智能研究所 联邦计算机科学与控制研究中心
摘要: 在机器人学中应用基于学习的控制方法面临着重大挑战。其中一个挑战是无模型强化学习算法利用具有低样本效率的观测数据。为了解决这一挑战,一种普遍的方法是基于模型的强化学习,其中涉及使用环境动态模型。我们建议用符号回归生成的符号表达式来近似转移动态。用符号模型近似机械系统比用神经网络近似具有更少的参数,这可能导致更高的外推准确性和质量。我们使用符号动力学模型在基于模型的策略优化中生成轨迹,以提高学习算法的样本效率。我们在模拟环境中的各种任务中评估我们的方法。与无模型和基于模型的基准方法相比,我们的方法在这些任务中表现出更优秀的样本效率。
论文链接: https://arxiv.org/abs/2407.13518
面向决策的因果学习,用于直接反事实营销优化
原标题: Decision Focused Causal Learning for Direct Counterfactual Marketing Optimization
作者: Hao Zhou, Rongxiao Huang, Shaoming Li, Guibin Jiang, Jiaqi Zheng, Bing Cheng, Wei Lin
机构: 南京大学 美团 北京
摘要: 营销优化在提升在线互联网平台用户参与度方面发挥着重要作用。现有研究通常将这一问题制定为预算分配问题,并通过利用两个完全解耦的阶段来解决,即机器学习(ML)和运筹学(OR)。然而,ML中的学习目标并未考虑OR中的下游优化任务,这导致ML中的预测准确性可能与决策质量没有正相关关系。
决策聚焦学习(DFL)将ML和OR整合到一个端到端框架中,将下游任务的目标作为决策损失函数,并确保ML和OR之间的优化方向一致。然而,在营销中部署DFL并不容易,因为存在多个技术挑战。首先,营销中的预算分配问题是一个0-1整数随机规划问题,预算在现实环境中是不确定的且波动很大,这超出了DFL中的一般问题背景。其次,营销中的反事实导致决策损失无法直接计算,最优解也无法获得,这两点都使得DFL中常见的梯度估计方法无法使用。第三,OR求解器在DFL模型训练期间频繁调用以计算决策损失,这会产生巨大的计算成本且无法支持大规模训练数据。本文提出了一种用于直接反事实营销优化的决策聚焦因果学习框架(DFCL),克服了上述技术挑战。离线实验和在线A/B测试均证明了DFCL相对于最先进方法的有效性。目前,DFCL已在美团等全球最大在线食品外卖平台的几个营销场景中得到应用。
论文链接: https://arxiv.org/abs/2407.13664
使用强化学习进行动态算法配置的实例选择:改善泛化
原标题: Instance Selection for Dynamic Algorithm Configuration with Reinforcement Learning: Improving Generalization
作者: Carolin Benjamins, Gjorgjina Cenikj, Ana Nikolikj, Aditya Mohan, Tome Eftimov, Marius Lindauer
机构: 勒布尼茨大学汉诺威 德国 乔瑟夫·斯特凡国际研究生院 乔瑟夫·斯特凡研究所 斯洛文尼亚 L3S研究中心
摘要: 动态算法配置(DAC)解决了动态设置算法超参数的挑战,针对的是多样化的实例集合,而不仅仅是专注于个别任务。通过使用深度强化学习(RL)训练的智能体提供了解决这类设置的途径。然而,这些智能体的有限泛化性能显著阻碍了在DAC中的应用。我们的假设是训练实例中存在潜在偏差限制了泛化能力。我们通过选择代表性的训练实例子集来缓解这一问题,以克服过度表征,然后在该子集上对智能体进行重新训练,以提高其泛化性能。为构建子集选择的元特征,我们特别考虑了RL智能体的动态特性,通过计算智能体与环境互动生成的动作和奖励轨迹的时间序列特征。通过在DAC标准基准库DACBench中的Sigmoid和CMA-ES基准上进行实证评估,我们讨论了我们的选择技术相对于在整个实例集上训练的潜力。我们的结果突显了实例选择在优化多样化实例空间的DAC策略中的功效。
论文链接: https://arxiv.org/abs/2407.13513
CogniVoice:用于从自发语音中评估轻度认知障碍的多模态和多语言融合网络
原标题: CogniVoice: Multimodal and Multilingual Fusion Networks for Mild Cognitive Impairment Assessment from Spontaneous Speech
作者: Jiali Cheng, Mohamed Elgaar, Nidhi Vakil, Hadi Amiri
机构: 马萨诸塞大学洛厄尔分校 美国
摘要: 轻度认知障碍(MCI)是一种医学状况,其特征是记忆和认知能力明显下降,可能影响个体的日常活动。在本文中,我们介绍了CogniVoice,这是一个新颖的多语言和多模态框架,通过分析语音数据及其文本转录来检测MCI并估计最小智力状态检查(MMSE)分数。CogniVoice的关键组成部分是基于“专家乘积”的集成多模态和多语言网络,可以减少对快捷解决方案的依赖。利用TAUKADIAL挑战赛中包含英语和中文语言的综合数据集,CogniVoice在MCI分类和MMSE回归任务上的表现优于表现最佳的基准模型,分别在F1和RMSE上分别提高了2.8和4.1个点,并且可以有效地减少不同语言组之间的性能差距,F1上减少了0.7个点。
论文链接: https://arxiv.org/abs/2407.13660
所有的道路都通往罗马?探索生成图像模型潜在空间之间的表征相似性
原标题: All Roads Lead to Rome? Exploring Representational Similarities Between Latent Spaces of Generative Image Models
作者: Charumathi Badrinath, Usha Bhalla, Alex Oesterling, Suraj Srinivas, Himabindu Lakkaraju
机构: 中国科学院 谷歌
摘要: 不同的生成图像模型是否会秘密地学习类似的潜在表示?我们通过测量四种不同模型的潜在空间相似性来进行调查:变分自编码器(VAEs)、生成对抗网络(GANs)、归一化流(NFs)和扩散模型(DMs)。我们的方法涉及在冻结的潜在空间之间训练线性映射,以“拼接”任意一对编码器和解码器,并测量生成的“拼接”模型上的基于输出和探针的度量。我们的主要发现是,性能良好的模型之间的线性映射即使潜在大小不同,也会保留大部分视觉信息;对于CelebA模型,性别是最相似的可探测属性。最后,我们展示了在一个NF上,潜在空间表示在训练早期就会收敛。
论文链接: https://arxiv.org/abs/2407.13449
通过零样本符号的神经符号程序进行开放世界视觉推理
原标题: Open-World Visual Reasoning by a Neuro-Symbolic Program of Zero-Shot Symbols
作者: Gertjan Burghouts, Fieke Hillerström, Erwin Walraven, Michael van Bekkum, Frank Ruis, Joris Sijs, Jelle van Mil, Judith Dijk
机构: TNO
摘要: 我们考虑在图像中找到多个物体的空间配置问题,例如,一个移动检测机器人被指示定位地板上被遗弃的工具。我们通过一阶逻辑中的关系和属性来定义物体的空间配置。一个神经符号程序将逻辑公式与由语言-视觉模型提供的概率物体提议进行匹配,通过查询这些模型以获取符号。这项工作是第一个在开放世界环境中结合神经符号编程(推理)和语言-视觉模型(学习)来找到图像中物体的空间配置的研究。我们通过在地板上找到被遗弃的工具和漏水管道来展示其有效性。我们发现大多数预测错误是由于语言-视觉模型中的偏见造成的。
论文链接: https://arxiv.org/abs/2407.13382
可重构智能表面辅助车载边缘计算:联合相移优化和多用户功率分配
原标题: Reconfigurable Intelligent Surface Aided Vehicular Edge Computing: Joint Phase-shift Optimization and Multi-User Power Allocation
作者: Kangwei Qi, Qiong Wu, Pingyi Fan, Nan Cheng, Wen Chen, Khaled B. Letaief
机构: 香港中文大学 深圳大学
摘要: 车载边缘计算(VEC)是一项新兴技术,在物联网车辆领域具有重要潜力,使车辆能够在本地执行密集的计算任务或将其卸载到附近的边缘设备。然而,由于建筑等障碍物的存在,通信链路的质量可能会严重恶化,从而阻碍卸载过程。为解决这一挑战,我们引入了可重构智能表面(RIS),为车载通信提供替代通信路径。通过动态调整RIS的相移,可以显著提高VEC系统的性能。在这项工作中,我们考虑了一个RIS辅助的VEC系统,并设计了一个针对本地执行功率、卸载功率和RIS相移的最优方案,考虑了随机任务到达和信道变化。为了解决这个方案,我们提出了一种创新的深度强化学习(DRL)框架,结合了用于优化RIS相移系数的深度确定性策略梯度(DDPG)算法和用于优化车辆用户(VU)功率分配的多智能体深度确定性策略梯度(MADDPG)算法。仿真结果表明,我们提出的方案优于传统的集中式DDPG、双延迟深度确定性策略梯度(TD3)和一些典型的随机方案。
论文链接: https://arxiv.org/abs/2407.13123
在马尔可夫决策过程中的几何主动探索:抽象的好处
原标题: Geometric Active Exploration in Markov Decision Processes: the Benefit of Abstraction
作者: Riccardo De Santi, Federico Arangath Joseph, Noah Liniger, Mirco Mutti, Andreas Krause
机构: 斯坦福大学 洛桑联邦理工学院
摘要: 科学家如何利用强化学习(RL)算法来设计动态系统状态空间上的实验?在有限且马尔可夫系统的情况下,一个称为主动探索(AE)的领域将实验设计的优化问题放宽为凸RL,这是RL的一种泛化,可以接受更广泛的奖励概念。不幸的是,这个框架目前并不具有可扩展性,而AE的潜力受到科学发现应用中实验空间广阔的限制。然而,这些空间通常具有自然几何结构,例如分子设计中的排列不变性,智能体可以利用这些结构来提高AE的统计和计算效率。为了实现这一目标,我们将AE和MDP同态映射联系起来,通过抽象的方式利用已知的几何结构。为此,我们做出了两个基本贡献:我们将MDP同态映射形式主义扩展到凸RL,并且我们提出了据我们所知,第一个正式捕捉通过同态映射在样本效率上带来好处的分析。最终,我们提出了几何主动探索(GAE)算法,我们在受科学发现问题启发的环境中从理论和实验两方面对其进行了分析。
论文链接: https://arxiv.org/abs/2407.13364
无需重新训练即可重建修剪后的模型
原标题: Reconstruct the Pruned Model without Any Retraining
作者: Pingjie Wang, Ziqing Fan, Shengchao Hu, Zhe Chen, Yanfeng Wang, Yu Wang
机构: 上海交通大学 人工智能实验室
摘要: 结构化剪枝是一种有前途的硬件友好型压缩技术,适用于大语言模型(LLMs),预计无需重新训练即可避免巨大的重新训练成本。这种无需重新训练的范式涉及(1)定义架构的剪枝标准和(2)失真重建以恢复性能。然而,现有方法通常强调剪枝标准,同时使用特定于某些模块或标准的重建技术,导致通用性受限。为了解决这个问题,我们引入了基于线性插值的自适应重建(LIAR)框架,既高效又有效。LIAR不需要反向传播或重新训练,并且与各种剪枝标准和模块兼容。通过对保留权重应用线性插值,LIAR最小化重建误差并有效重建剪枝输出。我们在GLUE、SQuAD、WikiText和常识推理等基准上的评估表明,LIAR使得 BERT 模型在删除 50% 参数后仍能保持 98% 的准确率,并且仅需几分钟即可在 LLaMA 上实现最佳性能。
论文链接: https://arxiv.org/abs/2407.13331
RISC-V RVV 对 ANN 算法的效率
原标题: RISC-V RVV efficiency for ANN algorithms
作者: Konstantin Rumyantsev, Pavel Yakovlev, Andrey Gorshkov, Andrey P. Sokolov
机构: 亚德洛 莫斯科国立大学
摘要: 在当今世界,处理大量数据至关重要。高性能计算的增长已经导致了对并行化的需求,特别是在诸如ANN(近似最近邻)之类的机器学习算法领域。为了提高这些算法的速度,优化它们以适应特定的处理器架构是很重要的。RISC-V(精简指令集计算机五)是现代处理器架构之一,具有名为RVV(RISC-V矢量扩展)的矢量指令集。在机器学习算法中,矢量扩展被广泛利用以改善大量数据的处理。本研究考察了将RVV应用于常用ANN算法的有效性。在确定主要瓶颈后,对这些算法进行了针对RISC-V的适配和RVV的优化。此外,我们开发了一个参数化矢量块的理论模型,并确定了在其他CPU参数固定时展示所研究的ANN算法的最高理论性能的平均配置。
论文链接: https://arxiv.org/abs/2407.13326
Krait:一种针对图提示调整的后门攻击
原标题: Krait: A Backdoor Attack Against Graph Prompt Tuning
作者: Ying Song, Rita Singh, Balaji Palanisamy
机构: 匹兹堡大学 卡内基梅隆大学
摘要: 图提示调优已经成为一种有前途的范式,可以有效地将通用图知识从预训练模型转移到各种下游任务中,特别是在少样本情境下。然而,其对后门攻击的敏感性,即对手插入触发器以操纵结果的情况,引发了一个关键关注点。我们进行了第一项研究,以调查这种脆弱性,揭示了后门可以伪装成良性图提示,从而规避检测。我们引入了Krait,一种新颖的图提示后门。具体来说,我们提出了一个简单而有效的与模型无关的度量标准,称为标签非均匀同质性,以选择中毒候选者,显著降低了计算复杂性。为了适应不同的攻击场景和高级攻击类型,我们设计了三种可定制的触发器生成方法,以制作提示作为触发器。我们提出了一种基于质心相似度的损失函数,以优化提示调优,以提高攻击效果和隐蔽性。对四个真实世界的图进行的实验表明,Krait可以高效地嵌入触发器到仅占训练节点的0.15%至2%,实现高攻击成功率而不牺牲干净的准确性。值得注意的是,在一对一和全对一攻击中,Krait可以通过仅中毒2个和22个节点,分别实现100%的攻击成功率。我们的实验进一步显示,Krait在不同的转移案例、攻击类型和图神经网络骨干结构下仍然有效。此外,Krait可以成功地扩展到黑盒设置,构成更严重的威胁。最后,我们分析了为什么Krait可以规避传统和最先进的防御措施,并提供了检测和缓解这类攻击的实用见解。
论文链接: https://arxiv.org/abs/2407.13068
基于Mean Teacher的半监督学习框架用于利用Wi-Fi RSSI指纹定位室内位置
原标题: Mean Teacher based SSL Framework for Indoor Localization Using Wi-Fi RSSI Fingerprinting
作者: Sihao Li, Zhe Tang, Kyeong Soo Kim, Jeremy S. Smith
机构: 浙江大学
摘要: Wi-Fi指纹定位广泛应用于室内定位,因为Wi-Fi设备的普及。然而,传统方法在多建筑物和多楼层环境中存在可扩展性问题,因此越来越多的研究人员采用深度学习技术实现可扩展的室内定位。本文介绍了一种基于无线接入点选择、噪声注入和Mean Teacher模型的神经网络半监督学习框架,利用未标记的指纹来增强定位性能。所提出的框架可以管理混合内/外部和自愿贡献的数据库,并在服务期间持续扩展指纹数据库,利用新提交的未标记指纹。使用UJIIndoorLoc数据库检验了所提出框架的可行性。实验结果表明,与基于监督学习的方法相比,所提出的框架在使用EvAAL指标进行楼层坐标估计方面显著提高了定位性能。在前一场景中,改进高达10.99%和8.98%,在后一场景中分别为4.25%和9.35%,额外研究强调了所提出框架的关键组件的重要性。
论文链接: https://arxiv.org/abs/2407.13303
基于Wi-Fi RSSI指纹定位的多建筑物和多楼层室内定位的链接深度神经网络的分层阶段式训练
原标题: Hierarchical Stage-Wise Training of Linked Deep Neural Networks for Multi-Building and Multi-Floor Indoor Localization Based on Wi-Fi RSSI Fingerprinting
作者: Sihao Li, Kyeong Soo Kim, Zhe Tang, Graduate, Jeremy S. Smith
机构: 清华大学 西交利物浦大学
摘要: 在这篇论文中,我们提出了一种基于链接神经网络的大规模多建筑物和多楼层室内定位问题的新解决方案,其中每个神经网络专门处理一个子问题,并在分层阶段式训练框架下进行训练。当传感器测量数据具有多建筑物和多楼层室内定位的分层表示时,利用数据处理中的分层性质提供可扩展的解决方案是很重要的。在这方面,分层阶段式训练框架通过根据从更高层次网络的训练中获得的先验知识来训练较低层次网络,将原始的阶段式训练框架扩展到多个链接网络的情况。公开可用的UJIIndoorLoc多建筑物和多楼层Wi-Fi RSSI指纹数据库的实验结果表明,根据提出的分层阶段式训练框架训练的链接神经网络可以实现8.19米的三维定位误差,据作者所知,这是有史以来使用UJIIndoorLoc数据库的完整数据集训练和评估的基于神经网络的模型获得的最准确的结果,而当应用于基于分层卷积神经网络的模型时,提出的训练框架还可以将三维定位误差显著从11.78米降低到8.71米。
论文链接: https://arxiv.org/abs/2407.13288
数据炼金术:通过测试时间数据校准减轻跨站点模型变异性
原标题: Data Alchemy: Mitigating Cross-Site Model Variability Through Test Time Data Calibration
作者: Abhijeet Parida, Antonia Alomar, Zhifan Jiang, Pooneh Roshanitabrizi, Austin Tapp, Maria Ledesma-Carbayo, Ziyue Xu, Syed Muhammed Anwar, Marius George Linguraru, Holger R. Roth
机构: 儿童国家医院 华盛顿特区 美国 Universidad Polit´ecnica de Madrid 马德里 西班牙 Universitat Pompeu Fabra 巴塞罗那 西班牙 Nvidia Corporation 圣克拉拉 加利福尼亚 美国 乔治华盛顿大学 华盛顿特区 美国
摘要: 在各个临床现场部署基于深度学习的成像工具存在重大挑战,这是由于固有的领域转移和与特定现场微调相关的监管障碍。对于组织病理学而言,染色归一化技术可以减轻差异,但通常无法消除不同现场之间的变化。因此,我们提出了Data Alchemy,这是一种可解释的染色归一化方法,结合了通过模板学习框架进行的测试时间数据校准,以克服跨站点分析中的障碍。Data Alchemy处理了多站点数据固有的转移,并在无需更改归一化或分类器网络的权重的情况下将其最小化。我们的方法扩展到在各种临床设置中未知数据领域差异的未见站点。大量实验证明了我们的框架在溴甲酚和噻唑啉染色斑块的肿瘤分类中的有效性。我们的可解释归一化方法将分类任务的精确度-召回曲线下面积(AUPR)从0.165提高到0.710,提高了0.545。此外,Data Alchemy进一步减少了多站点分类领域差距,通过将0.710的AUPR提高了额外的0.142,将分类性能进一步提高到0.852,从0.545提升。我们的Data Alchemy框架可以通过允许在多个站点之间无缝集成预训练的基于深度学习的临床工具,推广精准医学,而不需要额外的运营开销。
论文链接: https://arxiv.org/abs/2407.13632
审计本地解释很困难
原标题: Auditing Local Explanations is Hard
作者: Robi Bhattacharjee, Ulrike von Luxburg
机构: Tuebingen大学 Tuebingen人工智能中心
摘要: 在敏感环境中,机器学习算法的提供者越来越需要对其算法的决策进行解释。然而,解释接收者可能不信任提供者,后者有可能提供误导性或操纵过的解释。在这项工作中,我们研究了一个审计框架,第三方审计员或一群用户尝试对解释进行合理性检查:他们可以查询模型的决策和相应的局部解释,汇总所有收到的信息,然后检查基本的一致性属性。我们对在这个框架内审计成功所需的查询数量进行了上下界的证明。我们的结果表明,成功的审计需要大量的查询数量,特别是在高维情况下。我们的分析还揭示了所提供解释的“局部性”是一个关键属性,这在可解释性文献中迄今为止并未受到太多关注。展望未来,我们的结果表明,在复杂的高维设置中,仅提供点预测和解释可能是不够的,因为用户无法验证所提供的解释是否完全是虚构的。
论文链接: https://arxiv.org/abs/2407.13281
通过交叉Wasserstein球实现分布稳健和对抗稳健的逻辑回归
原标题: Distributionally and Adversarially Robust Logistic Regression via Intersecting Wasserstein Balls
作者: Aras Selvi, Eleonora Kreacic, Mohsen Ghassemi, Vamsi Potluru, Tucker Balch, Manuela Veloso
机构: 帝国理工商学院 JP Morgan AI Research
摘要: 经验风险最小化通常无法提供对抗性攻击的鲁棒性,导致测试数据中表现不佳,出现样本外性能下降。因此,对抗性鲁棒优化(ARO)已成为获取能够抵御此类攻击的模型的事实标准。然而,虽然这些模型对抗性攻击具有鲁棒性,但它们往往严重受到过拟合的影响。为了解决逻辑回归的这一问题,我们研究了ARO的Wasserstein分布鲁棒(DR)对应问题,并表明该问题可以得到一个易处理的重新表述。此外,我们开发了一个框架,通过利用辅助数据集(例如合成数据、外部数据或域外数据),每当可用时,从一个非相同但相关的真实基本事实中独立采样实例,以减少该问题的保守性。具体而言,我们将DR问题的模糊集与使用辅助数据集构建的另一个Wasserstein模糊集相交。我们分析了潜在优化问题的特性,开发了高效的解决算法,并证明所提出的方法在真实数据集上始终优于基准方法。
论文链接: https://arxiv.org/abs/2407.13625
分析和弥合深度强化学习中最大化总奖励和折扣奖励之间的差距
原标题: Analyzing and Bridging the Gap between Maximizing Total Reward and Discounted Reward in Deep Reinforcement Learning
作者: Shuyu Yin, Fei Wen, Peilin Liu, Tao Luo
摘要: 在深度强化学习应用中,通常会采用最大化折扣奖励而不是最大化总奖励,以确保算法的收敛性和稳定性,即使用于评估策略的性能指标仍然是总奖励。然而,对应于这两个目标的最优策略可能并不总是一致的。为了解决这个问题,我们分析了通过最大化折扣奖励获得的策略相对于最大化总奖励的次优性,并确定了超参数的影响。此外,我们提出了在不同设置下使这两个目标的最优策略保持一致的充分条件。主要贡献如下:我们在理论上分析了在将折扣奖励作为总奖励的替代时影响性能的因素,从而增强了对这种情况的理论理解。此外,我们开发了在某些情况下使这两个目标的最优策略保持一致的方法,可以提高强化学习算法的性能。
论文链接: https://arxiv.org/abs/2407.13279
MeshFeat:网格上神经场的多分辨率特征
原标题: MeshFeat: Multi-Resolution Features for Neural Fields on Meshes
作者: Mihir Mahajan, Florian Hofherr, Daniel Cremers
机构: 慕尼黑工业大学 慕尼黑机器学习中心
摘要: 参数特征网格编码作为神经场的编码方法已经引起了广泛关注,因为它们可以使用更小的MLP,从而显著减少模型的推断时间。在这项工作中,我们提出了MeshFeat,这是一种针对网格量身定制的参数特征编码,我们从欧几里得空间的多分辨率特征网格的思想进行了调整。我们从给定的顶点拓扑结构开始,并使用网格简化算法直接在网格上构建多分辨率特征表示。这种方法允许在网格上使用小型MLP进行神经场处理,并且我们展示了与以前的表示相比显著加快的速度,同时保持了纹理重建和BRDF表示的可比质量。由于与顶点的内在耦合,该方法特别适用于在变形网格上的表示,使其非常适合对象动画。
论文链接: https://arxiv.org/abs/2407.13592
深度时间序列模型:一项全面调查和基准测试
原标题: Deep Time Series Models: A Comprehensive Survey and Benchmark
作者: Yuxuan Wang, Haixu Wu, Jiaxiang Dong, Yong Liu, Mingsheng Long, Jianmin Wang
机构: 清华大学 哈尔滨工业大学 中国科学院 自然语言处理实验室 中国科学院计算技术研究所 中国科学院大学
摘要: 时间序列,以离散时间顺序排列的数据点序列为特征,在现实世界的应用中无处不在。与其他模态不同,时间序列由于其复杂和动态的特性,包括非线性模式和时变趋势的纠缠,呈现出独特的挑战。分析时间序列数据在现实场景中具有重要意义,并且已经被广泛研究了几个世纪。近年来,时间序列社区取得了显著突破,技术从传统的统计方法转向先进的深度学习模型。在本文中,我们深入探讨了深度时间序列模型在各种分析任务中的设计,并从两个角度审视了现有文献:基本模块和模型架构。此外,我们开发并发布了时间序列库(TSLib),作为深度时间序列模型在各种分析任务中的公平基准,该库实现了24个主流模型,涵盖了来自不同领域的30个数据集,并支持五种流行的分析任务。基于TSLib,我们对12个先进的深度时间序列模型在不同任务上进行了全面评估。实证结果表明,具有特定结构的模型非常适合不同的分析任务,这为深度时间序列模型的研究和采用提供了见解。代码可在此 https URL 获取。
论文链接: https://arxiv.org/abs/2407.13278
Github: https://github.com/thuml/Time-Series-Library
使用或不使用替换?提高傅立叶成像的置信度
原标题: With or Without Replacement? Improving Confidence in Fourier Imaging
作者: Frederik Hoppe, Claudio Mayrink Verdun, Felix Krahmer, Marion I. Menzel, Holger Rauhut
机构: 亚琛工业大学 哈佛大学 慕尼黑工业大学 慕尼黑大学 慕尼黑路德维希-马克西米利安大学
摘要: 在过去几年中,为了为机器学习和数据科学中的高维问题建立严格的置信区间,已经提出了去偏估计器。其核心论点是,这些估计器相对于基本事实的误差可以表示为一个高斯变量加上一个随着问题维度足够高而消失的余项。因此,可以利用高斯模型执行不确定性量化(UQ)。然而,从经验上看,在许多现实情况下,尤其是在某些结构化测量场景(如磁共振成像(MRI))中,余项不能在中等规模维度下被忽略。这反过来会降低 UQ 方法相对于标准 LASSO 等非 UQ 方法的优势。在本文中,我们提出了一种通过无重复抽样来改进去偏估计器的方法。我们的方法利用了我们最近关于某些抽样方案的随机性质结构的研究结果,展示了如何在抽样有和无重复之间的转换可以导致一个带有改进性能的加权重构方案,适用于标准 LASSO。在本文中,我们阐述了这种重新加权抽样思想如何也可以改进去偏估计器,从而为 Fourier 成像中的 UQ 提供更好的方法。
论文链接: https://arxiv.org/abs/2407.13575
使用对抗性精炼的主题一致反事实在图级异常检测中的应用
原标题: Motif-Consistent Counterfactuals with Adversarial Refinement for Graph-Level Anomaly Detection
作者: Chunjing Xiao, Shikang Pang, Wenxin Tai, Yanlong Huang, Goce Trajcevski, Fan Zhou
机构: 河南大学 中国 电子科技大学 爱荷华州立大学 USA
摘要: 图级异常检测在各个领域中都具有重要意义。为了提高检测性能,已经利用反事实图来增强学习因果关系的泛化能力。大多数现有研究直接引入扰动(例如,翻转边)来生成反事实图,这很容易改变生成示例的语义并使其偏离数据流形,导致性能不佳。为了解决这些问题,我们提出了一种新颖的方法,即具有对抗精炼的图案一致反事实(MotifCAR),用于图级异常检测。该模型结合了一个图的主题图案,包含识别(类别)信息的核心子图,以及另一个图的上下文子图(非主题图案),以生成原始反事实图。然而,生成的原始图可能会失真,并且无法满足重要的反事实属性:真实性、有效性、接近性和稀疏性。为此,我们提出了基于生成对抗网络(GAN)的图优化器来优化原始反事实图。它采用鉴别器来引导生成器生成接近真实数据的图,即满足真实性属性。此外,我们设计了图案一致性,以强制生成的图的主题图案与真实图一致,满足有效性属性。此外,我们设计了上下文损失和连接损失来控制上下文子图和新添加的链接,以满足接近性和稀疏性属性。因此,该模型可以生成高质量的反事实图。实验证明了MotifCAR的优越性。
论文链接: https://arxiv.org/abs/2407.13251
使用随机竞争的Transformer进行表格数据建模
原标题: Transformers with Stochastic Competition for Tabular Data Modelling
作者: Andreas Voskou, Charalambos Christoforou, Sotirios Chatzis
摘要: 尽管表格数据在许多行业和领域中普遍存在且具有重要意义,但在深度学习领域中,对其的研究相对较少。即使在今天,神经网络通常也被诸如梯度提升决策树(GBDT)等技术所遮盖。然而,最近的模型开始弥合这一差距,在各种设置中胜过GBDT,并在该领域引起了更多关注。受到这一发展的启发,我们介绍了一种专门为表格数据设计的新型随机深度学习模型。该模型的基础是基于Transformer的架构,通过策略性的架构修改和利用两种形式的随机竞争,精心调整以满足表格数据的独特属性。首先,我们采用随机的“局部胜者通吃”单元,通过随机性和稀疏性促进泛化能力。其次,我们引入了一种新颖的嵌入层,通过一种随机竞争机制在多个备选线性嵌入层中进行选择。该模型的有效性已在各种广泛使用的公开数据集上得到验证。我们证明,通过引入这些元素,我们的模型在表格数据的深度学习应用中取得了高性能,并标志着重大进展。
论文链接: https://arxiv.org/abs/2407.13238
利用 SVM 模型和毫米波雷达传感器数据进行非接触呼吸率分类
原标题: Non-Contact Breath Rate Classification Using SVM Model and mmWave Radar Sensor Data
作者: Mohammad Wassaf Ali, Ayushi Gupta, Mujeev Khan, Mohd Wajid
机构: 阿里加尔穆斯林大学 电子工程系 计算机工程系
摘要: 这项工作介绍了利用调频连续波(FMCW)雷达技术结合机器学习模型来区分正常和异常呼吸频率。所提出的系统利用FMCW雷达非接触地收集依赖于呼吸频率的数据。采用各种支持向量机核方法将观测数据分类为正常和异常状态。长时间实验显示在呼吸频率分类方面具有良好的准确性,证实了模型的有效性。在二次多项式核的情况下,最佳准确率为95%,支持向量的数量最少。
论文链接: https://arxiv.org/abs/2407.13222
LIMT:语言引导的多任务视觉世界模型
原标题: LIMT: Language-Informed Multi-Task Visual World Models
作者: Elie Aljalbout, Nikolaos Sotirakis, Patrick van der Smagt, Maximilian Karl, Nutan Chen
机构: 慕尼黑工业大学 腓特烈亚历山大大学 瑞士联邦理工学院 纽伦堡工业大学
摘要: 最近机器人强化学习领域取得的最新成功案例涉及学习专门的单一任务智能体。然而,在现实世界的应用中,能够执行多项任务的机器人可能更有价值。多任务强化学习可能非常具有挑战性,因为样本复杂性增加,任务目标可能存在冲突。先前关于这一主题的工作主要由无模型方法主导。即使在学习专门的单一任务智能体时,后者也可能非常低效。在这项工作中,我们专注于基于模型的多任务强化学习。我们提出了一种学习多任务视觉世界模型的方法,利用预训练的语言模型来提取语义上有意义的任务表示。这些表示被世界模型和策略用来推断动态和行为中的任务相似性。我们的结果突显了使用以语言驱动的任务表示来进行世界模型的好处,以及基于模型的多任务学习相对于更常见的无模型范式的明显优势。
论文链接: https://arxiv.org/abs/2407.13466
SA-DVAE:通过解耦变分自动编码器改进零样本基于骨架的动作识别
原标题: SA-DVAE: Improving Zero-Shot Skeleton-Based Action Recognition by Disentangled Variational Autoencoders
作者: Sheng-Wei Li, Zi-Xiang Wei, Wei-Jie Chen, Yi-Hsin Yu, Chih-Yuan Yang, Jane Yung-jen Hsu
机构: 国立台湾大学 长庚大学
摘要: 现有的零样本基于骨架的动作识别方法利用投影网络来学习骨架特征和语义嵌入的共享潜在空间。动作识别数据集中固定的类别标签与可变的骨架序列之间固有的不平衡特征给对齐带来了显著挑战。为了解决这种不平衡,我们提出了 SA-DVAE – 通过解耦变分自动编码器实现语义对齐,该方法首先采用特征解耦将骨架特征分为两个独立部分 – 一个与语义相关,另一个与语义无关 – 以更好地对齐骨架和语义特征。我们通过一对特定于模态的变分自动编码器实现了这一想法,并结合了总校正惩罚。我们在三个基准数据集上进行实验:NTU RGB+D、NTU RGB+D 120 和 PKU-MMD,我们的实验结果表明,SA-DAVE 相对于现有方法表现出更好的性能。代码可在此网址找到。
论文链接: https://arxiv.org/abs/2407.13460
Github: https://github.com/pha123661/SA-DVAE
模仿的艺术:从少量演示中学习长期规划操纵任务
原标题: The Art of Imitation: Learning Long-Horizon Manipulation Tasks from Few Demonstrations
作者: Jan Ole von Hartz, Tim Welschehold, Abhinav Valada, Joschka Boedecker
机构: Technical University of Munich
University of Freiburg
Google
摘要: 任务参数化高斯混合模型(TP-GMM)是一种学习以对象为中心的机器人操作任务的高效方法。然而,在将TP-GMM应用于实际环境中存在几个挑战。在这项工作中,我们协同解决了三个关键挑战。首先,末端执行器速度是非欧几里得的,因此很难使用标准GMM进行建模。因此,我们建议将机器人的末端执行器速度分解为方向和大小,并使用黎曼GMM对其进行建模。其次,我们利用分解后的速度从复杂的演示轨迹中分割和排序技能。通过分割,我们进一步对齐技能轨迹,从而利用时间作为强大的归纳偏差。第三,我们提出了一种方法,可以从视觉观察中自动检测每个技能的相关任务参数。我们的方法使得仅使用五次演示就能学习复杂的操作任务,同时仅使用RGB-D观察。在RLBench上进行的大量实验评估表明,我们的方法实现了具有20倍改进的样本效率的最新性能。我们的策略在不同环境、对象实例和对象位置之间泛化,而学到的技能是可重用的。
论文链接: https://arxiv.org/abs/2407.13432
探索端到端可微分神经带电粒子跟踪——损失景观视角
原标题: Exploring End-to-end Differentiable Neural Charged Particle Tracking – A Loss Landscape Perspective
作者: Tobias Kortus, Ralf Keidel, Nicolas R. Gauger (for the Bergen pCT Collaboration)
机构: 凯撒斯劳滕-兰道大学(RPTU) 汉堡大学(UHH)
摘要: 对于科学、医疗或工业应用中的高能粒子的测量和分析是一个复杂的过程,需要设计复杂的探测器和数据处理系统。因此,使用传统和机器学习算法相结合开发自适应和可微分软件流水线变得越来越重要,以便在保持端到端(E2E)可微分性的同时优化和高效运行系统。我们提出了一种用于带电粒子跟踪应用的端到端可微分的决策焦点学习方案,使用图神经网络和组合组件解决每个探测器层的线性分配问题。我们通过实验证明,包括离散分配操作的可微分变化可以实现网络的高效优化,效果要么更好,要么与缺乏端到端可微分性的方法相当。在额外的研究中,我们深入探讨了优化过程,并从损失函数的角度提供了进一步的见解。我们证明,虽然两种方法都收敛到类似表现良好的全局连接区域,但它们在初始化和优化方法下存在显著的预测不稳定性,这可能对图像重建等下游任务的性能产生不可预测的影响。我们还指出了梯度估计器的插值因子与模型预测稳定性之间的依赖性,建议选择足够小的值。鉴于学习解决方案的强大全局连接性和出色的训练性能,我们认为端到端可微分性不仅提供了梯度信息的普遍可用性,还是减轻预测不稳定性的重要工具,通过偏爱在下游任务上表现良好的解决方案来缓解预测不稳定性。
论文链接: https://arxiv.org/abs/2407.13420
压缩模型并非大模型的微型版本
原标题: Compressed models are NOT miniature versions of large models
作者: Rohit Raj Rai, Rishant Pal, Amit Awekar
机构: 印度理工学院果亚哈提分校
摘要: 大型神经模型在部署前通常会进行压缩。模型压缩在许多实际情况下是必要的,比如推理延迟、内存占用和能耗。压缩模型被认为是对应大型神经模型的微型版本。然而,在我们的工作中,我们对这种信念提出了质疑。我们使用四个模型特征比较压缩模型与对应的大型神经模型:预测误差、数据表示、数据分布和对抗攻击的脆弱性。我们使用 BERT-large 模型及其五个压缩版本进行实验。对于所有四个模型特征,压缩模型与 BERT-large 模型显著不同。即使在压缩模型之间,它们在所有四个模型特征上也存在差异。除了预期的模型性能损失外,使用压缩模型替换大型神经模型还会产生重大副作用。
论文链接: https://arxiv.org/abs/2407.13174
HHGT:用于异构图表示学习的分层异构图 Transformer
原标题: HHGT: Hierarchical Heterogeneous Graph Transformer for Heterogeneous Graph Representation Learning
作者: Qiuyu Zhu, Liang Zhang, Qianxiong Xu, Kaijun Liu, Cheng Long, Xiaoyang Wang
机构: 新加坡南洋理工大学 澳大利亚新南威尔士大学
摘要: 尽管异构图神经网络(HGNNs)在建模现实世界的异构信息网络(HINs)方面取得了成功,但挑战,如表达能力限制和过度平滑,促使研究人员探索图变换器(GTs)以增强HIN表示学习。然而,关于HIN中GT的研究仍然有限,现有工作存在两个关键缺点:(1)在HIN中,节点在不同距离上的邻居传达不同的语义。不幸的是,现有方法忽略了这种差异,并统一地粗略处理给定距离内的邻居,导致语义混淆。(2)HIN中的节点具有各种类型,每种类型具有独特的语义。然而,现有方法在邻居聚合过程中混合不同类型的节点,阻碍了捕捉不同类型节点之间适当相关性的能力。为了弥合这些差距,我们设计了一种名为(k,t)-环邻域的创新结构,其中节点最初按照它们的距离进行组织,为每个距离形成不重叠的不同k-环邻域。在每个k-环结构内,节点根据它们的类型进一步分类为不同的组,从而自然地强调HIN中距离和类型的异质性。基于这种结构,我们提出了一种新颖的分层异构图变换器(HHGT)模型,它无缝集成了一个类型级变换器,用于在每个k-环邻域内聚合不同类型的节点,然后是一个环级变换器,用于以分层方式聚合不同的k-环邻域。在下游任务上进行了大量实验,验证了HHGT相对于14个基线的优越性,与ACM数据集上最佳基线相比,在节点聚类任务中NMI提高了高达24.75%,ARI提高了29.25%。
论文链接: https://arxiv.org/abs/2407.13158
通过概率最优控制实现确定性轨迹优化
原标题: Deterministic Trajectory Optimization through Probabilistic Optimal Control
作者: Mohammad Mahmoudi Filabadi, Tom Lefebvre, Guillaume Crevecoeur
摘要: 这篇文章提出了两种针对离散时间确定性有限时间非线性最优控制问题或所谓的轨迹优化问题量身定制的新算法。这两种算法都受到一种称为概率最优控制的新颖理论范式的启发,该范式将最优控制重新表述为一个等价的概率推断问题。这种视角使得可以使用期望最大化算法来解决这个问题。我们展示了应用这种算法会导致概率策略的固定点迭代,这些策略会收敛到确定性最优策略。讨论了两种策略评估方法,使用最先进的不确定性量化方法,从而得到了两种不同的算法。这些算法在结构上与微分动态规划算法及使用sigma点方法避免直接梯度评估的相关方法最为接近。我们工作的主要优势在于在迭代过程中改善了探索和利用之间的平衡,从而提高了数值稳定性并加速了收敛速度。这些特性在不同非线性系统上得到了展示。
论文链接: https://arxiv.org/abs/2407.13316
集成硬件架构和设备放置搜索
原标题: Integrated Hardware Architecture and Device Placement Search
作者: Irene Wang, Jakub Tarnawski, Amar Phanishayee, Divya Mahajan
摘要: 深度学习训练的分布式执行涉及硬件加速器架构和设备放置策略之间的动态相互作用。这是第一项探索通过新颖算法优化确定最佳架构和设备放置策略的工作,改善计算资源、内存使用和数据分布的平衡。我们的架构搜索利用张量和向量单元,确定它们的数量和维度,以及芯片内外存储配置。它还确定微批量大小,并决定是重新计算还是存储激活,平衡训练的内存占用和存储大小。对于每个探索的架构配置,我们使用整数线性规划(ILP)来找到在加速器上执行操作的最佳调度。ILP 的结果然后与动态规划解决方案集成,以识别最有效的设备放置策略,结合数据、流水线和张量模型的并行性跨多个加速器。与最先进的 TPUv4 和 Spotlight 加速器搜索框架相比,我们的方法在大型语言模型上实现了更高的吞吐量。PHAZE 的整个源代码可在此网址获得。
论文链接: https://arxiv.org/abs/2407.13143
Github: https://github.com/msr-fiddle/phaze
通过非负核回归软聚类进行外分布检测
原标题: Out-of-Distribution Detection through Soft Clustering with Non-Negative Kernel Regression
作者: Aryan Gulati, Xingjian Dong, Carlos Hurtado, Sarath Shekkizhar, Swabha Swayamdipta, Antonio Ortega
机构: 南加州大学 西班牙巴塞罗那理工大学 美国泰尼克斯
摘要: 随着语言模型变得更加通用,需要更多关注检测超出分布(OOD)实例,即那些不属于训练过程中见过的任何分布的实例。现有的检测OOD数据的方法在计算上复杂且占用存储空间。我们提出了一种基于非负核回归的新颖软聚类方法用于OOD检测。我们的方法大大降低了计算和空间复杂性(推理时间提高了11倍,存储需求减少了87%),并在四个不同基准测试中比现有方法提高了高达4个AUROC点。我们还介绍了我们算法的一种受熵约束的版本,可以进一步降低存储需求(比可比方法低达97%),同时保持竞争性能。我们的OOD检测软聚类方法突显了在极端规模数据设置中检测尾部现象的潜力。
论文链接: https://arxiv.org/abs/2407.13141
工业过程中半监督多单元软传感的深层潜变量模型
原标题: A deep latent variable model for semi-supervised multi-unit soft sensing in industrial processes
作者: Bjarne Grimstad, Kristian Løvland, Lars S. Imsland, Vidar Gunnerud
机构: 挪威科技大学 Solution Seeker公司
摘要: 在许多工业过程中,数据明显不足限制了数据驱动软传感器的发展。然而,通常可以通过更具数据效率来学习更强大的模型。为了实现这一点,可以利用从软传感器学习的数据的知识。利用工业数据经常具有的属性,我们引入了一个用于半监督多单元软传感的深度潜变量模型。这种分层生成模型能够共同建模不同单元,并从带标签和未标记数据中学习。
使用两个数据集进行了多单元软传感的实证研究:一个是单相流体流动的合成数据集,另一个是油气井中多相流动的大型真实数据集。我们展示了通过结合半监督和多任务学习,所提出的模型取得了优越的结果,胜过了当前针对这一软传感问题的主流方法。我们还表明,当模型在多单元数据集上训练后,可以仅使用少量数据点对先前未见单元进行微调。在这个微调过程中,未标记数据提高了软传感器的性能;值得注意的是,即使没有可用的带标签数据,这也是正确的。
论文链接: https://arxiv.org/abs/2407.13310
在部分观测下的预测低秩矩阵学习:混合投影 ADMM
原标题: Predictive Low Rank Matrix Learning under Partial Observations: Mixed-Projection ADMM
作者: Dimitris Bertsimas, Nicholas A. G. Johnson
机构: 麻省理工学院
摘要: 我们研究了在完全观察到的依赖于真实基础矩阵的线性侧面信息存在的情况下,在低秩假设下学习部分观察到的矩阵的问题。这个问题是矩阵补全问题的一个重要泛化,矩阵补全问题是统计学、运筹学和机器学习中的一个核心问题,在推荐系统、信号处理、系统识别和图像去噪等应用中出现。我们将这个问题形式化为一个优化问题,其目标在于平衡重建与观察条目的拟合强度与重建对侧面信息的预测能力。我们推导出了结果优化问题的混合投影重构,并提出了一个强半定锥松弛。我们设计了一种高效、可扩展的交替方向乘子方法算法,可以生成对感兴趣问题的高质量可行解。我们的数值结果表明,在小秩范围( k ≤ 15 k \leq 15 k≤15)中,我们的算法输出的解的平均目标值比实验中表现最佳的基准方法返回的解低了 79 % 79\% 79%, ℓ 2 \ell_2 ℓ2重建误差低了 90.1 % 90.1\% 90.1%。我们的算法的运行时间与基准方法相竞争,并且通常优于基准方法。我们的算法能够在不到一分钟内解决具有 n = 10000 n = 10000 n=10000行和 m = 10000 m = 10000 m=10000列的问题。
论文链接: https://arxiv.org/abs/2407.13731
Scikit-fingerprints:在Python中轻松高效地计算分子指纹
原标题: Scikit-fingerprints: easy and efficient computation of molecular fingerprints in Python
作者: Jakub Adamczyk, Piotr Ludynia
机构: AGH克拉科夫大学 计算机科学系 波兰
摘要: 在这项工作中,我们介绍了 \textit{scikit-fingerprints},这是一个用于在化学信息学应用中计算分子指纹的 Python 软件包。我们的库提供了行业标准的 scikit-learn 接口,使用户可以直观地使用并轻松地将其集成到机器学习流程中。它还经过高度优化,具有并行计算功能,可以有效处理大型分子数据集。目前,\textit{scikit-fingerprints} 是 Python 生态系统中功能最丰富的库,提供了超过30种分子指纹。我们的库简化了基于分子指纹的化学信息学任务,包括分子性质预测和虚拟筛选。它还具有灵活性、高效性,并且完全开源。
论文链接: https://arxiv.org/abs/2407.13291
压缩结构化张量代数
原标题: Compressing Structured Tensor Algebra
作者: Mahdi Ghorbani, Emilien Bauer, Tobias Grosser, Amir Shaikhha
机构: 爱丁堡大学 剑桥大学
摘要: 张量代数是数据密集型工作负载(如机器学习和科学计算)的关键组成部分。随着数据复杂性的增加,科学家们经常在高度专门化的密集张量代数和稀疏张量代数提供的高效结构感知算法之间遇到困境。在本文中,我们介绍了 DASTAC,这是一个框架,通过整合自动数据布局压缩、多面体分析和仿射代码生成等技术,将张量捕获的高层结构传播到低级代码生成。我们的方法通过自动检测最佳数据布局来减少内存占用,充分受益于多面体优化,利用进一步的优化,并通过 MLIR 实现并行化。通过广泛的实验,我们展示了 DASTAC 相对于 TACO(一种最先进的稀疏张量编译器)和 StructTensor(一种最先进的结构张量代数编译器)实现了1到2个数量级的加速,并且内存占用明显更低。
论文链接: https://arxiv.org/abs/2407.13726
基于注意力的简单原语用于开放世界组合零样本学习
原标题: Attention Based Simple Primitives for Open World Compositional Zero-Shot Learning
作者: Ans Munir, Faisal Z. Qureshi, Muhammad Haris Khan, Mohsen Ali
机构: 信息技术大学 安斯·穆尼尔 安纳海姆 巴基斯坦 费萨尔·Z·库雷希 安大略理工学院 奥沙瓦 加拿大 穆罕默德·哈里斯·汗 MBZUAI 阿布扎比 阿联酋 莫赛恩·阿里 信息技术大学 拉合尔 巴基斯坦
摘要: 组合式零样本学习(CZSL)旨在预测由属性和对象对组成的未知组合。在训练期间预测未见过的组合是一项具有挑战性的任务。本研究中我们正在探索开放世界的组合式零样本学习(OW-CZSL),其中我们的测试空间涵盖了所有属性和对象的潜在组合。我们的方法涉及利用属性和对象之间的自注意机制,以实现从已见到未见组合的更好泛化能力。利用自注意机制有助于模型识别属性和对象之间的关系。随后计算自注意文本和视觉特征之间的相似性,以在推理阶段生成预测。潜在的测试空间可能包括由于无限制的属性-对象配对而产生的不切实际的对象-属性组合。为了缓解这个问题,我们利用ConceptNet的外部知识将测试空间限制在现实组合中。我们提出的模型,基于注意力的简单原语(ASP),表现出竞争性能,实现了与最先进技术相媲美的结果。
论文链接: https://arxiv.org/abs/2407.13715
基于数据驱动的条件期望估计,应用于最优停止和强化学习
原标题: Data-Driven Estimation of Conditional Expectations, Application to Optimal Stopping and Reinforcement Learning
作者: George V. Moustakides
机构: 帕特拉斯大学
摘要: 当已知基础条件密度时,可以通过解析或数值方法计算条件期望。然而,当没有这样的知识可用,而是给定一组训练数据时,本文的目标是提出简单且纯粹基于数据的方法,直接估计所需的条件期望。因为条件期望出现在描述许多随机优化问题中,相应最优解满足一组非线性方程组,我们将我们的数据驱动方法扩展到覆盖这些情况。我们通过将其应用于强化学习中的最优停止和最优行动策略来测试我们的方法论。
论文链接: https://arxiv.org/abs/2407.13189
我们准备好在数字病理学中进行外分布检测了吗?
原标题: Are We Ready for Out-of-Distribution Detection in Digital Pathology?
作者: Ji-Hun Oh, Kianoush Falahkheirkhah, Rohit Bhargava
机构: 伊利诺伊大学厄巴纳-香槟分校 CZ Biohub Chicago LLC
摘要: 在数字病理学(DP)中,语义和协变量的异常检测是一个至关重要但被忽视的挑战。最近,机器学习社区提出了大量关于异常检测的见解和方法,但它们在DP应用中表现如何?为此,我们开展了一项基准研究,我们的亮点包括:1)采用适当的评估协议,2)在单一和多模型设置中比较不同的检测器,以及3)探索像迁移学习(ImageNet 对比 DP 预训练)和架构选择(CNN 对比 Transformer)等高级机器学习设置。通过我们全面的实验,我们提供了新的见解和指导方针,为未来的研究和讨论铺平道路。
论文链接: https://arxiv.org/abs/2407.13708
从仅加速度测量中发现结构动力学的控制方程
原标题: Discovering governing equation in structural dynamics from acceleration-only measurements
作者: Calvin Alvares, Souvik Chakraborty
机构: 印度理工学院德里分校 印度 亚迪人工智能学院
摘要: 在过去几年中,方程式发现在不同科学和工程领域中变得越来越受欢迎。然而,现有的方程式发现算法依赖于状态变量(即位移和速度)的嘈杂测量数据的可用性。这是结构动力学中的一个主要瓶颈,因为我们通常只能访问加速度测量数据。为此,本文介绍了一种新颖的方程式发现算法,用于从仅加速度测量数据中发现动态系统的控制方程。所提出的算法采用基于库的方法进行方程式发现。为了实现从仅加速度测量数据中发现方程式,我们提出了一种新颖的优先考虑简约模型的近似贝叶斯计算(ABC)模型。所提出算法的有效性通过包括线性和非线性动态系统在内的四个结构动力学示例进行了说明。所呈现的案例研究展示了所提出方法在从仅加速度测量数据中发现动态系统方程式方面的可能应用。
论文链接: https://arxiv.org/abs/2407.13704
证券借贷市场的动态定价:在代理出借人投资组合中的收入优化应用
原标题: Dynamic Pricing in Securities Lending Market: Application in Revenue Optimization for an Agent Lender Portfolio
作者: Jing Xu, Yung Cheng Hsu, William Biscarri
机构: 摩根大通
摘要: 证券借贷是金融市场结构的重要组成部分,代理出借人帮助长期机构投资者将其证券出借给做空者,以换取出借费。市场内的代理出借人寻求通过以尽可能高的利率出借证券来优化收入。通常,这一利率是由硬编码的业务规则或标准监督式机器学习模型设定的。这些方法通常难以扩展,并且无法适应不断变化的市场条件。与具有集中限价订单簿的传统股票交易所不同,证券借贷市场的组织方式类似于电子商务市场,代理出借人和借方可以双边协商以任何约定价格进行交易。这种相似性表明,在证券借贷市场中,采用典型的电子商务动态定价问题解决方法可能是有效的。我们展示了现有的上下文强化学习框架可以成功地应用于证券借贷市场。通过对真实历史数据的离线评估,我们展示了上下文强化学习方法在总收入生成方面至少比典型方法高出15%。
论文链接: https://arxiv.org/abs/2407.13687
音视频通用零样本学习的简便方法
原标题: Audio-visual Generalized Zero-shot Learning the Easy Way
作者: Shentong Mo, Pedro Morgado
机构: 卡内基梅隆大学 威斯康星大学麦迪逊分校
摘要: 音频-视觉广义零样本学习是一个快速发展的领域,旨在理解视频中音频和视觉线索之间的复杂关系。其首要目标是利用从已见类别中获得的见解,来识别以前未见类别的实例。先前的方法主要利用同步自动编码器重建音频-视觉属性,这些属性受到交叉注意力Transformer和投影文本嵌入的启发。然而,这些方法未能有效捕捉交叉模态特征和预训练语言对齐嵌入中固有的类别标签嵌入之间的复杂关系。为了规避这些瓶颈,我们引入了一个简单而有效的框架,用于Easy Audio-Visual Generalized Zero-shot Learning,名为EZ-AVGZL,它将音频-视觉嵌入与转换后的文本表示进行了对齐。它利用单个监督文本音频-视觉对比损失来学习音频-视觉和文本模态之间的对齐,摆脱了重建交叉模态特征和文本嵌入的传统方法。我们的关键洞察是,虽然类别名称嵌入与基于语言的音频-视觉特征很好地对齐,但它们并不能提供足够的类别分离以用于零样本学习。为了解决这个问题,我们的方法利用差分优化将类别嵌入转换为更具有区分性的空间,同时保留语言表示的语义结构。我们在VGGSound-GZSL、UCF-GZSL和ActivityNet-GZSL基准上进行了大量实验。我们的结果表明,我们的EZ-AVGZL在音频-视觉广义零样本学习中实现了最先进的性能。
论文链接: https://arxiv.org/abs/2407.13095