Outlines:用于 LLM 应用的结构化文本生成
Outlines中文教程文档:https://www.aidoczh.com/outlines/
Outlines是一个 Python 库,旨在革新 LLM 应用的结构化文本生成。通过提供控制和预测 LLM 输出的工具,它确保生成的文本遵循特定格式和约束。这种结构化的方法提高了可靠性,并使 LLM 无缝集成到复杂应用中,如数据提取、响应格式化和工作流自动化。
在本文中,我们将深入探讨Outlines的功能、特性和潜力,以及它如何使开发人员能够创建结构化、可靠和高效的基于 LLM 的系统。
什么是Outlines?
Outlines是一个开源库,提供开发人员控制和预测 LLM 输出的工具。与传统的自由形式生成不同,Outlines专注于 结构化生成,确保文本遵循指定格式、约束和数据类型。这种控制级别对精度和可靠性至关重要的应用程序而言是必要的。
Outlines的关键特性
1. 结构化生成
Outlines使开发人员能够使用多种技术定义 LLM 输出的结构:
- 多选择: 将输出限制为预定义的选项集。
- 类型约束: 将输出限制为特定数据类型,如整数或浮点数。
- 正则表达式结构化生成: 使用正则表达式强制执行复杂但精确的输出格式。
- JSON 架构强制: 确保生成的文本符合 JSON 架构或 Pydantic 模型。
- 语法结构化生成: 使用上下文无关文法 (CFG) 创建 SQL、Python 或其他语言的语法有效输出。
2. 使用 Jinja2 提示
Outlines利用 Jinja2 模板引擎 定义可重用和动态的提示。这种将逻辑与应用程序代码分离的方式提高了可维护性和模块化程度。
from outlines import JinjaPrompt
template = JinjaPrompt("你的 {{ attribute }} 是什么?")
filled_prompt = template.render(attribute="最喜欢的颜色")
print(filled_prompt)
3. 支持多种模型
Outlines支持各种 LLM 提供商和架构,包括:
- OpenAI 模型
- Transformers
- llama.cpp
- exllama2
- Mamba
这种灵活性避免了供应商锁定,使开发人员能够选择适合自己特定需求的最佳模型。
4. Python 函数集成
开发人员可以通过与 LLM 集成 Python 函数动态指定输出结构。
from outlines import generate_with_function
def extract_user_details(name: str, age: int):
return f"用户:{name}, 年龄:{age}"
result = generate_with_function(extract_user_details, model="gpt-4")
print(result)
5. 性能与效率
Outlines通过以下方式提高性能:
- 降低推理成本: 约束简化了模型决策,降低了计算开销。
- 提高准确性: 约束输出改善了基本和微调模型的任务特定性能。
- 批量推理: 支持同时处理多个查询。
核心概念
结构化生成技术
Outlines的核心结构化生成方法使其在 LLM 生态系统中脱颖而出:
多选择:
from outlines import choice
options = choice(["红色", "蓝色", "绿色"])
print(f"选择的选项:{options}")
类型约束:
from outlines import format
number = format("int")
print(f"生成的整数:{number}")
正则表达式约束:
from outlines import regex
phone_number = regex(r"\(\d{3}\) \d{3}-\d{4}")
print(f"生成的电话号码:{phone_number}")
基于 JSON 和语法的生成
JSON 架构强制:
from outlines import json_schema
schema = {
"type": "object",
"properties": {
"name": {"type": "string"},
"age": {"type": "integer"}
},
"required": ["name", "age"]
}
result = json_schema(schema)
print(result)
基于语法的生成:
from outlines import grammar
grammar_definition = """
句子 = 名词 动词 对象
名词 = "狗" | "猫"
动词 = "追" | "抓"
对象 = "球" | "老鼠"
"""
sentence = grammar(grammar_definition)
print(sentence)
Outlines的使用案例
- 数据提取
- 从非结构化文本中提取结构化信息,如电子邮件或文档。
- 响应格式化
- 生成符合预定义模板的输出,用于聊天机器人或 API 响应。
- 编程辅助
- 创建语法有效的 SQL 查询、Python 脚本或自定义代码片段。
- 互动应用
- 构建可靠且一致的对话 AI 系统。
- 商务工作流自动化
- 使用结构化文本生成生成发票、报告或客户互动日志。
快速入门Outlines
安装
Outlines可以通过 pip 安装:
pip install outlines
示例:简单结构化管道
from outlines import Pipeline
# 定义管道
pipeline = Pipeline([
{"component": "fetcher", "config": {"source": "https://example.com"}},
{"component": "converter", "config": {"type": "html_to_text"}},
{"component": "generator", "config": {"model": "gpt-4"}}
])
# 执行管道
result = pipeline.run({"query": "这个网页的内容是什么?"})
print(result)
与 vLLM 的集成
Outlines与 vLLM 无缝集成,以实现大规模服务模型。提供了 Docker 镜像以简化部署:
docker pull dottxtai/outlines-vllm
docker run -p 8080:8080 dottxtai/outlines-vllm
Outlines相对于自由形式生成的优势
- 可靠性: 通过结构化约束输出可预测的结果。
- 效率: 降低推理过程中的计算开销。
- 可扩展性: 轻松处理复杂工作流。
- 灵活性: 兼容多种 LLM 提供商,并支持动态工作流。
结论
Outlines是一个颠覆性的 Python 库,将可靠性、可预测性和效率带入 LLM 的世界。其强大的结构化生成技术、集成功能和积极开发使其成为构建复杂应用程序的开发人员的重要工具。无论您是在创建互动聊天机器人、数据提取工具还是工作流自动化系统,Outlines都提供了您所需的控制和精确度。
今天就来探索这个库,提升您的 LLM 驱动应用程序到一个新水平。