题意:给你一个图,n个点,m条边,m条边的边权是1,现在定义一个sum[i],表示的是以i点,到达所有点的最短路,整个图的权值定义,现在按照顺序依次删去每一条边,问你每次图的权值的变化。
思路:我们跑一边最短路,把松弛的边记录下来,我们可以看出这样我们会构建出一颗最短路树,为什么,因为这样的话我们的每一个前驱只能有一个后继,这样他就是一颗树,而且删除这些边之后,最短路会改变,那么每次删除的时候,我们就看我们删除的是不是一条树边,如果他是一条树边的话我们删除,最短路就会改变,那么我们需要在跑一边最短路,倘若我们删除的是一条非树边的话,那么对最短路没有改变,我们直接加上我们sum[i]就好了
代码:
#include <bits/stdc++.h>
using namespace std;
const int maxn = 100 + 10;
const int INF = 1e6+10;
vector<tuple<int,int> >G[maxn];
int n , m ;
int vis[maxn] , sum[maxn] , dis[maxn];
map<int,int>M[maxn];
void dij(int s)
{
for(int i = 1 ; i <= n ; i++) vis[i] = 0 , dis[i] = INF;
dis[s] = 0 , vis[s] = 1;
queue<int>Q;
int u , val;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();Q.pop();
int v,w,id;
for(auto i : G[u])
{
tie(v,id) = i;
if(vis[v]) continue;
vis[v] = 1;
dis[v] = dis[u] + 1;
M[s][id] = 1;
Q.push(v);
}
}
sum[s] = 0;
for(int i = 1 ; i <= n ;i ++) sum[s] += dis[i];
}
int bfs(int s,int pos)
{
queue<int>Q;
for(int i = 1 ; i <= n ; i++) vis[i] = 0 , dis[i] = INF;
dis[s] = 0 , vis[s] = 1;
Q.push(s);
while(!Q.empty())
{
int u = Q.front();Q.pop();
int v,w,id;
for(auto i : G[u])
{
tie(v,id) = i;
if(id == pos) continue;//如果我遍历的边是我们删除的边的话,我们就跳过
if(vis[v]) continue;
vis[v] = 1;
dis[v] = dis[u] + 1;
Q.push(v);
}
}
int res = 0;
for(int i = 1 ; i <= n ; i++)
{
if(dis[i] == INF) return INF;
res += dis[i];
}
return res;
}
int main()
{
while(scanf("%d%d",&n,&m)!=EOF)
{
int u , v;
for(int i = 0 ; i <= n ; i++) G[i].clear(),M[i].clear() , sum[i] = 0;
for(int i = 0 ; i < m ; i++)
{
scanf("%d%d",&u,&v);
G[u].emplace_back(v,i+1);
G[v].emplace_back(u,i+1);
}
for(int i = 1 ; i <= n ; i++) dij(i);
for(int i = 1 ; i <= m ; i++) // 我删除第i条边
{
int ans = 0 ;
for(int j = 1 ; j <= n ; j ++) // 我遍历以j为起点的边
{
if(M[j][i] == 0) ans += sum[j]; // 如果是非树边
else
{
int x = bfs(j,i); // 是树边我们就要删除这个边
ans += x;
if(x == INF) break;
}
}
if(ans >= INF) puts("INF");
else printf("%d\n",ans);
}
}
}