HDU 2433 Travel (最短路树 )

该博客探讨了一种图论问题,涉及在图中定义的最短路径和边权重为1的情况下,按顺序删除每条边时权值的变化。作者提出通过构建最短路树来记录松弛边,并解释了如何确定删除树边与非树边对最短路径的影响。删除树边需要重新计算最短路径,而非树边则不影响。文章提供了相应的算法代码实现。
摘要由CSDN通过智能技术生成

题意:给你一个图,n个点,m条边,m条边的边权是1,现在定义一个sum[i],表示的是以i点,到达所有点的最短路,整个图的权值定义\sum sum[i],现在按照顺序依次删去每一条边,问你每次图的权值的变化。

思路:我们跑一边最短路,把松弛的边记录下来,我们可以看出这样我们会构建出一颗最短路树,为什么,因为这样的话我们的每一个前驱只能有一个后继,这样他就是一颗树,而且删除这些边之后,最短路会改变,那么每次删除的时候,我们就看我们删除的是不是一条树边,如果他是一条树边的话我们删除,最短路就会改变,那么我们需要在跑一边最短路,倘若我们删除的是一条非树边的话,那么对最短路没有改变,我们直接加上我们sum[i]就好了

代码:

#include <bits/stdc++.h>
using namespace std;
const int maxn = 100 + 10;
const int INF = 1e6+10;
vector<tuple<int,int> >G[maxn];
int n , m ;
int vis[maxn] , sum[maxn] , dis[maxn];
map<int,int>M[maxn];
void dij(int s)
{
	for(int i = 1 ; i <= n ; i++) vis[i] = 0 , dis[i] = INF;
	dis[s] = 0 , vis[s] = 1;
	queue<int>Q;
	int u , val;
	Q.push(s);
	while(!Q.empty())
	{
		int u = Q.front();Q.pop();
		int v,w,id;
		for(auto i : G[u])
		{
			tie(v,id) = i;
			if(vis[v]) continue;
			vis[v] = 1;
			dis[v] = dis[u] + 1;
			M[s][id] = 1;
			Q.push(v);
		}
	}
	sum[s] = 0;
	for(int i = 1 ; i <= n ;i ++) sum[s] += dis[i];
}
int bfs(int s,int pos)
{
	queue<int>Q;
	for(int i = 1 ; i <= n ; i++) vis[i] = 0 , dis[i] = INF;
	dis[s] = 0 , vis[s] = 1;
	Q.push(s);
	while(!Q.empty())
	{
		int u = Q.front();Q.pop();
		int v,w,id;
		for(auto i : G[u])
		{
			tie(v,id) = i;
			if(id == pos) continue;//如果我遍历的边是我们删除的边的话,我们就跳过
			if(vis[v]) continue;
			vis[v] = 1;
			dis[v] = dis[u] + 1;
			Q.push(v);
		}
	}
	int res = 0;
	for(int i = 1 ; i <= n ; i++)
	{
		if(dis[i] == INF) return INF;
		res += dis[i];
	}
	return res;
}
int main()
{
	
	while(scanf("%d%d",&n,&m)!=EOF)
	{
		int u , v;
		for(int i = 0 ; i <= n ; i++) G[i].clear(),M[i].clear() , sum[i] = 0;
		for(int i = 0 ; i < m ; i++)
		{
			scanf("%d%d",&u,&v);
			G[u].emplace_back(v,i+1);
			G[v].emplace_back(u,i+1);
		}
		for(int i = 1 ; i <= n ; i++) dij(i);
		for(int i = 1 ; i <= m ; i++) // 我删除第i条边 
		{
			int ans = 0 ;
			for(int j = 1 ; j <= n ; j ++)  // 我遍历以j为起点的边
			{
				if(M[j][i] == 0) ans += sum[j]; // 如果是非树边
				else
				{
					int x = bfs(j,i); // 是树边我们就要删除这个边
					ans += x;
					if(x == INF) break;
				}
			}
			if(ans >= INF) puts("INF");
			else printf("%d\n",ans);
		}
	}
}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值