测度论与概率论基础学习笔记6——2.4可测函数的收敛性


在前面,我们已经学了各种集合系的概念、测度的定义和性质、外测度、测度的扩张和测度空间的完备化。今天主要记录可测函数的收敛性,这部分内容和数学分析是比较相似的。


1.补充可测函数的概念,之前没有说清楚:

1.1 Borel集合系
我们知道 σ \sigma σ域对交、补、可列并运算是封闭的。特别地,我们把 R n \mathbb R^n Rn上由一切开集构成的开集族,其生成的 σ \sigma σ域称作 R n \mathbb R^n Rn的Borel σ \sigma σ域,其中的集合称为Borel集。我们用 B R \mathscr B_{\mathbf R} BR表示 R \mathbb R R上的Borel集合系。根据定义,也即:
B R = σ ( O R ) \mathscr B_{\mathbf R} = \sigma(\mathscr O_{\mathbf R}) BR=σ(OR)
其中 O R \mathscr O_{\mathbf R} OR R \mathbb R R中开集组成的集合系。

1.2 可测函数
我们知道,正负无穷是特殊的数。为此定义广义实数集: R ′ = R ∪ { − ∞ } ∪ { + ∞ } \mathbf R'=\mathbb R \cup \{-\infty\} \cup \{+\infty\} R=R{}{+}.相应地,定义 R ′ \mathbf R' R上的Borel集合系:
B R ′ = σ ( B R , { + ∞ } , { − ∞ } ) \mathscr B_{\mathbf R'} = \sigma(\mathscr B_{\mathbf R},\{+\infty\},\{-\infty\}) BR=σ(BR,{+},{})
因此,从测度空间 ( X , F ) (X,\mathscr F) (X,F) ( R ′ , B R ′ ) (\mathbf R',\mathscr B_{\mathbf R'} ) (R,BR)的可测映射称为 ( X , F ) (X,\mathscr F) (X,F)上的可测函数。
可以看到,可测函数的函数值可以是无穷大。相应地,如果函数是从 ( X , F ) (X,\mathscr F) (X,F) ( R , B R ) (\mathbf R,\mathscr B_{\mathbf R} ) (R,BR)上的映射,就可以叫做有限值可测函数。随机变量就是一种有限值可测函数。
  \space  

2.可测函数的收敛性

首先先学习三个概念:几乎处处收敛;几乎一致收敛;按测度收敛。

2.1几乎处处收敛
这里的收敛性都是强调几乎(almost),顾名思义,几乎怎样就是不怎样的概率(测度)是0.
定义1: { f n } \{f_n\} {fn} f f f是测度空间 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ)上的可测函数,若
μ ( lim ⁡ n → ∞ f n ≠ f ) = 0 \mu(\lim_{n\to\infty}f_n\ne f)=0 μ(nlimfn=f)=0
则说可测函数列 { f n } \{f_n\} {fn}几乎处处(almost everywhere,a.e.)以 f f f为极限。如果, f f f几乎处处有限 f n → a . e . f f_n \stackrel{a.e.}{\rightarrow}f fna.e.f,则称 { f n } \{f_n\} {fn}几乎处处收敛至 f f f.
上面的式子也可写为:
μ ( lim ⁡ n → ∞ f n = f ) = μ ( X ) \mu(\lim_{n\to\infty}f_n= f)=\mu(X) μ(nlimfn=f)=μ(X)
当然,在概率空间中,等号右边的值就是1.
{ lim ⁡ n → ∞ f n ≠ f } \{\lim_{n\to\infty}f_n\ne f\} {limnfn=f}写成集合极限的形式(我认为是上极限),有如下命题:
命题1: f n → a . e . f f_n \stackrel{a.e.}{\rightarrow}f fna.e.f当且仅当
μ ( ∩ m = 1 ∞ ∪ n = m ∞ { ∣ f n − f ∣ ≥ ε } ) = 0 \mu (\cap_{m=1}^\infty \cup_{n=m}^\infty \{|f_n-f|\ge \varepsilon\})=0 μ(m=1n=m{fnfε})=0

2.2 几乎一致收敛

定义2: { f n } \{f_n\} {fn} f f f是测度空间 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ)上的可测函数,若对任给 ε > 0 , ∃ A ∈ F : μ ( A ) < ε \varepsilon>0,\exists A\in \mathscr F:\mu(A)<\varepsilon ε>0,AFμ(A)<ε
lim ⁡ n → ∞ sup ⁡ x ∉ A ∣ f n ( x ) − f ( x ) ∣ = 0 \lim_{n\to\infty}\sup_{x\notin A}|f_n(x)-f(x)|=0 nlimx/Asupfn(x)f(x)=0
则说 { f n } \{f_n\} {fn}几乎一致(almost uniform,a.u.)收敛到 f f f
这个定义与数学分析中一致收敛的定义有异曲同工之意。一致收敛是比处处收敛(点态收敛)更严格的收敛。
几乎一致收敛也有一个等价的命题:
命题2: f n → a . u . f f_n \stackrel{a.u.}{\rightarrow}f fna.u.f当且仅当
lim ⁡ m → ∞ μ ( ∪ n = m ∞ { ∣ f n − f ∣ ≥ ε } ) = 0 \lim_{m\to\infty}\mu (\cup_{n=m}^\infty \{|f_n-f|\ge \varepsilon\})=0 mlimμ(n=m{fnfε})=0
(Note:说实话,我感觉命题1和命题2是一回事…,但只是在测度有限的情况下才是一回事,待悟。)

2.3按测度收敛
顾名思义:(老顾名思义了)
定义3: { f n } \{f_n\} {fn} f f f是测度空间 ( X , F , μ ) (X,\mathscr F,\mu) (X,F,μ)上的可测函数,若对任给 ε > 0 \varepsilon>0 ε>0:
lim ⁡ n → ∞ μ ( f n − f ∣ ≥ ε ) = 0 \lim_{n\to\infty}\mu (f_n-f|\ge \varepsilon)=0 nlimμ(fnfε)=0
则称 f n → μ f f_n \stackrel{\mu}{\rightarrow}f fnμf.

2.4 三者的关系
如前所述,几乎一致收敛是最严格的,因此:
f n → q . u . f ⇒ f n → a . e . f , f n → μ f f_n \stackrel{q.u.}{\rightarrow}f \Rightarrow f_n \stackrel{a.e.}{\rightarrow}f , f_n \stackrel{\mu}{\rightarrow}f fnq.u.ffna.e.ffnμf
在测度有限的条件下,a.e.收敛和a.u.收敛等价。

3.讨论概率空间
对概率空间 ( X , F , P ) (X,\mathscr F,P) (X,F,P)来说,依测度收敛就称作依概率收敛。对于之前说过的准分布函数(单调非降右连续) F F F,若满足 lim ⁡ x → + ∞ F ( x ) = 1 , lim ⁡ x → − ∞ F ( x ) = 0 \lim_{x\to + \infty}F(x)=1,\lim_{x\to - \infty}F(x)=0 limx+F(x)=1,limxF(x)=0,则其称作分布函数,定义为:
F ( x ) = P { f ≤ X } F(x)=P\{f \le X\} F(x)=P{fX}
且称 f f f服从 F F F.

定义4.左连续逆
F F F是一准分布函数, t ∈ ( F ( − ∞ ) , F ( + ∞ ) ) t\in(F(-\infty),F(+\infty)) t(F(),F(+)),令
F ← ( t ) = inf ⁡ { x ∈ R : F ( x ) ≥ t } F^{\leftarrow}(t)=\inf \{x\in\R :F(x)\ge t\} F(t)=inf{xR:F(x)t}
F F F的左连续逆。

理解:逆的概念,自然是单独的自变量和函数值的关系,在这里,定义为使得 F F F大于某个值的自变量的下确界。想象 F F F是一个阶梯状的分布函数,则对于某一个 t t t的范围,其左连续逆是同一个 x x x。则有如下充要关系:
F ← ( t ) ≤ x ⇔ F ( x ) ≥ t F^{\leftarrow}(t)\le x \Leftrightarrow F(x)\ge t F(t)xF(x)t

定理5.
对任何概率分布函数 F F F,必存在一个概率空间 ( X , F , P ) (X,\mathscr F,P) (X,F,P)和其上的一个随机变量 f f f,使得 f ∼ F f \sim F fF

证明:考虑均匀分布的分布函数: U ( t ) = t , ∀ t ∈ ( 0 , 1 ) U(t)=t,\forall t \in (0,1) U(t)=t,t(0,1),考察一个复合函数 F ← ∘ U F^{\leftarrow} \circ U FU:
在这里插入图片描述

  • 0
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值