YOLO X, v3 ~ v12 + 各种跟踪器(SORT, DeepSORT, ByteTrack, BoT-SORT)实现多目标跟踪

之前的YOLOv7-Tracker迎来重磅更新!现在的代码更清晰、效果更好、泛化性更强!如果对您有用欢迎star: https://github.com/JackWoo0831/Yolov7-tracker,谢谢!

以下是仓库的介绍和使用方法:

YOLO检测器与SOTA多目标跟踪工具箱

❗❗重要提示

与之前的版本相比,这是一个全新的版本(分支v2)!!!

请直接使用这个版本,因为我几乎重写了所有代码,以确保更好的可读性和改进的结果,并修正了以往代码中的一些错误。

git clone https://github.com/JackWoo0831/Yolov7-tracker.git
git checkout v2  # change to v2 branch !!

🙌 如果您有任何关于添加跟踪器的建议,请在Issues部分留言并附上论文标题或链接!欢迎大家一起来让这个repo变得更好

效果图

❤️ 介绍

这个仓库是一个实现了检测后跟踪范式多目标跟踪器的工具箱。检测器支持:

跟踪器支持:

REID模型支持:

行人重识别模型:

  • OSNet
  • Extractor from DeepSort
  • ShuffleNet
  • MobileNet

车辆重识别模型:

部分重识别模型的权重: 百度网盘 提取码: c655

亮点包括:

  • 支持的跟踪器比MMTracking多
  • 统一的代码风格重写了多个跟踪器,无需为每个跟踪器配置多个环境
  • 模块化设计,将检测器、跟踪器、外观提取模块和卡尔曼滤波器解耦,便于进行实验

🔨 安装

基本环境是:

  • Ubuntu 20.04
  • Python:3.9, Pytorch: 1.12

运行以下命令安装其他包:

pip3 install -r requirements.txt

🔍 检测器安装

  1. YOLOX:

YOLOX的版本是0.1.0(与ByteTrack相同)。要安装它,你可以在某处克隆ByteTrack仓库,然后运行:

https://github.com/ifzhang/ByteTrack.git

python3 setup.py develop
  1. YOLO v7:

由于仓库本身就是基于YOLOv7的,因此无需执行额外的步骤。

  1. Ultralytics的YOLO系列模型:

请运行:

pip3 install ultralytics
or 
pip3 install --upgrade ultralytics

📑 数据准备

如果你不想在特定数据集上测试,而只想运行演示,请跳过这一部分。

无论你想测试哪个数据集,请按以下方式(YOLO风格)组织:

dataset_name
     |---images
           |---train
                 |---sequence_name1
                             |---000001.jpg
                             |---000002.jpg ...
           |---val ...
           |---test ...

     |

你可以参考./tools中的代码来了解如何组织数据集。

然后,你需要准备一个yaml文件来指明路径,以便代码能够找到图像

一些示例在tracker/config_files中。重要的键包括:

DATASET_ROOT: '/data/xxxx/datasets/MOT17'  # your dataset root
SPLIT: test  # train, test or val
CATEGORY_NAMES:  # same in YOLO training
  - 'pedestrian'

CATEGORY_DICT:
  0: 'pedestrian'

🚗 实践

🏃 训练

跟踪器通常不需要训练参数。请参考不同检测器的训练方法来训练YOLOs。

以下参考资料可能对你有帮助:

  • YOLOX: tracker/yolox_utils/train_yolox.py

  • YOLO v7:

python train_aux.py --dataset visdrone --workers 8 --device <$GPU_id$> --batch-size 16 --data data/visdrone_all.yaml --img 1280 1280 --cfg cfg/training/yolov7-w6.yaml --weights <$YOLO v7 pretrained model path$> --name yolov7-w6-custom --hyp data/hyp.scratch.custom.yaml
  • Ultralytics的YOLO系列模型 (YOLO v3 ~ v12): tracker/yolo_ultralytics_utils/train_yolo_ultralytics.py
python tracker/yolo_ultralytics_utils/train_yolo_ultralytics.py --model_weight weights/yolo11m.pt --data_cfg tracker/yolo_ultralytics_utils/data_cfgs/visdrone_det.yaml --epochs 30 --batch_size 8 --img_sz 1280 --device 0

关于重识别模型的训练, 请先参照对应模型的原论文或代码. 行人重识别模型例如 ShuffleNet, OSNet 参考 torchreid, 车辆重识别模型参考 AICIty-reID-2020.

😊 跟踪!

如果你只是想运行一个demo:

python tracker/track_demo.py --obj ${video path or images folder path} --detector ${yolox, yolov7 or yolo_ultra} --tracker ${tracker name} --kalman_format ${kalman format, sort, byte, ...} --detector_model_path ${detector weight path} --save_images

❗❗重要提示

如果你是通过 ultralytics 库训练检测模型, 命令里的--detector参数 必须包含ultra字段, 例如
--detector yolo_ultra, --detector yolo_ultra_v8, --detector yolov11_ultra, --detector yolo12_ultralytics, 等等.

例如:

python tracker/track_demo.py --obj M0203.mp4 --detector yolov8 --tracker deepsort --kalman_format byte --detector_model_path weights/yolov8l_UAVDT_60epochs_20230509.pt --save_images

如果你想在数据集上测试:

python tracker/track.py --dataset ${dataset name, related with the yaml file} --detector ${yolox, yolo_ultra_v8 or yolov7} --tracker ${tracker name} --kalman_format ${kalman format, sort, byte, ...} --detector_model_path ${detector weight path}

此外, 还可以指定

--reid: 启用reid模型(目前对ByteTrack, BoT-SORT, OCSORT有用)

--reid_model: 采用那种模型: 参照tracker/trackers/reid_models/engine.py中的REID_MODEL_DICT选取

--reid_model_path: 加载的重识别模型权重路径

--conf_thresh_low: 对于两阶段关联模型(ByteTrack, BoT-SORT等), 最低置信度阈值(默认0.1)

--fuse_detection_score: 如果加上, 就融合IoU的值和检测置信度的值, 例如BoT-SORT的源码是这样做的

--save_images: 保存结果图片

各种跟踪算法运行示例:

  • SORT: python tracker/track.py --dataset uavdt --detector yolo_ultra_v8 --tracker sort --kalman_format sort --detector_model_path weights/yolov8l_UAVDT_60epochs_20230509.pt

  • DeepSORT: python tracker/track.py --dataset visdrone_part --detector yolov7 --tracker deepsort --kalman_format byte --detector_model_path weights/yolov8l_VisDroneDet_35epochs_20230605.pt

  • ByteTrack: python tracker/track.py --dataset uavdt --detector yolo_ultra_v8 --tracker bytetrack --kalman_format byte --detector_model_path weights/yolov8l_UAVDT_60epochs_20230509.pt

  • ByteTrack-ReID: python tracker/track.py --dataset uavdt --detector yolo_ultra_v8 --tracker bytetrack --kalman_format byte --detector_model_path weights/yolov8l_UAVDT_60epochs_20230509.pt --reid --reid_model osnet_x0_25 --reid_model_path weights/osnet_x0_25.pth

  • OCSort: python tracker/track.py --dataset mot17 --detector yolox --tracker ocsort --kalman_format ocsort --detector_model_path weights/bytetrack_m_mot17.pth.tar

  • DeepOCSORT: python tracker/track.py --dataset mot17 --detector yolox --tracker ocsort --kalman_format ocsort --detector_model_path weights/bytetrack_m_mot17.pth.tar --reid --reid_model shufflenet_v2_x1_0 --reid_model_path shufflenetv2_x1-5666bf0f80.pth

  • C-BIoU Track: python tracker/track.py --dataset uavdt --detector yolo_ultra_v8 --tracker c_bioutrack --kalman_format bot --detector_model_path weights/yolov8l_UAVDT_60epochs_20230509.pt

  • BoT-SORT: python tracker/track.py --dataset uavdt --detector yolox --tracker botsort --kalman_format bot --detector_model_path weights/yolox_m_uavdt_50epochs.pth.tar

  • BoT-SORT-ReID: python tracker/track.py --dataset uavdt --detector yolox --tracker botsort --kalman_format bot --detector_model_path weights/yolox_m_uavdt_50epochs.pth.tar --reid --reid_model vehiclenet --reid_model_path vehicle_net_resnet50.pth

  • Strong SORT: python tracker/track.py --dataset visdrone_part --detector yolo_ultra_v8 --tracker strongsort --kalman_format strongsort --detector_model_path weights/yolov8l_VisDroneDet_35epochs_20230605.pt

  • Sparse Track: python tracker/track.py --dataset uavdt --detector yolo_ultra_v11 --tracker sparsetrack --kalman_format bot --detector_model_path weights/yolov8l_UAVDT_60epochs_20230509.pt

  • UCMC Track: python tracker/track.py --dataset mot17 --detector yolox --tracker ucmctrack --kalman_format ucmc --detector_model_path weights/bytetrack_m_mot17.pth.tar --camera_parameter_folder ./tracker/cam_param_files

  • Hybrid SORT: python tracker/track.py --dataset visdrone_part --detector yolo_ultra --tracker hybridsort --kalman_format hybridsort --detector_model_path weights/yolov8l_VisDrone_35epochs_20230509.pt --save_images

UCMC Track的重要提示:

  1. 相机参数. UCMC Track需要相机的内参和外参. 请按照tracker/cam_ram_files/uavdt/M0101.txt的格式组织. 一个视频序列对应一个txt文件. 如果您没有标记的参数, 可以参考原始仓库中的估算工具箱(https://github.com/corfyi/UCMCTrack).

  2. 该代码不包含每两帧之间的相机运动补偿部分, 请参阅https://github.com/corfyi/UCMCTrack/issues/12. 在我看来, 既然算法叫"统一相机运动补偿", 因此不需要每两帧之间再更新补偿.

✅ 评估

马上推出!作为备选项,你可以使用这个repo: Easier to use TrackEval repo.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值