综合理解CFS、CTFT、S;DFS、DTFT、DFT、Z

三段话 解释:
连续周期信号的CFS(傅里叶级数),
连续非周期信号的CTFT(连续时间傅里叶变换),
连续周期信号的CTFT;
+
离散周期序列的DFS(傅里叶级数),
离散非周期序列的DTFT(离散时间傅里叶变换),
离散周期序列的DTFT;
+
s变换和z变换
(注明:P页数指的是信号与系统第四版那本书的页数)

  • 1
    周期的信号往往有规律 可以用一个完备信号集表示,比如连续信号用的三角函数集合,又比如离散信号用的复指数序列的信号集-P242。
    而非周期信号 满足绝对可积 可和的 可以用CTFT和DTFT。
    思考:周期信号可以用级数表示,非周期的可以用CTFT和DTFT表示,但是这样不美观,能不能不管是周期还是非周期,给它统一起来,都用CTFT和DTFT进行表示?
    因为CTFT和DTFT要求信号满足绝对可积或绝对可和的。但是周期(连续或者离散)信号显然不满足。难道周期信号就没有CTFT和DTFT了吗?答案当然是可以的。见P252的6.3节,有解释:其实就是引入了冲激函数,使得周期信号也可以进行傅里叶变换(连续信号的解释在P122,离散信号的解释在P252)

    这里插一嘴:周期信号不满足绝对可积 or 绝对可和的条件,因此不能直接利用CTFT和DTFT,需要引入冲激函数才可以。

  • 2
    对于连续信号,分析对应的s变换 :加入了一个衰减信号,那么,如果周期信号乘衰减信号也绝对可积(换言之 满足收敛条件 ),那么非周期信号肯定也可以进行拉氏变换 ,即所有信号乘以衰减信号后得到的信号都有可能变得绝对可积。因此S变换其实就是信号f(t)和衰减信号相乘后的CTFT。
    因此CTFT其实就是在虚轴上的S变换(将S变换局限与虚轴jw)。

  • 3
    对于离散信号,因为更常用,故对第1点进行一点补充:离散信号分周期和非周期:
    对于周期为N的离散信号f(k),可以用信号集中独立的N个复指数序列的线性组合得到-P242(因此N越大,组成f(k)的频率分量就越多)。当周期N趋于无穷大,变为非周期的离散信号f(k)。(又因为N趋于无穷大,组成f(k)的频率分量无穷多,因此频谱变得连续)。离散非周期f(k)用DTFT,是用无穷多个不同幅度的复指数信号积分得到,因此公式中用的F(ejw) 是关于ejw的函数(F(ejw)和ejw都是周期函数)。

    dtft在频域是连续的,需要在频域离散才可以被计算机处理,因此出现了dft。那么还有一个z变换。课本中,通过抽样序列的拉普拉斯变换定义了z变换。此外 dtft就是在单位圆上的z变换。

  • 4
    一个连续信号如果是周期的,那其频谱是离散的;如果是非周期的,那其频谱是连续的。离散信号就简单了 因为离散信号是对连续信号进行抽样得到。从频域分析的话 是对周期信号的频谱进行周期性搬移 ,且周期等于抽样频率fs。

    插一嘴:周期信号的频谱是离散的,非周期信号的频谱是连续的(这里没有区分连续还是非连续,看第4段话就知道了)。我的理解是,还是第1点中说的,周期的往往有规律可循,用有限的频率就可以表示;而非周期的往往没有规律,需要用无穷多的频率来表示,频率多到连续起来。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

楠~~~~~

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值