求最大公约数与最小公倍数 (辗转相除法+更相减损法+Stein算法)

辗转相除法与更相减损法对比:

(1)两者都是求最大公因数的方法,计算上辗转相除法以除法为主,更相减损术以减法为主,计算次数上辗转相除法计算次数相对较少,特别当两个数字大小区别较大时计算次数的区别较明显。

(2)从结果体现形式来看,辗转相除法体现结果是以相除余数为0则得到,而更相减损术则以减数与差相等而得到。

更相损减法在两数相差较大时,时间复杂度容易退化成O(N),而辗转相除法可以稳定在O(logN)。但辗转相除法需要试商,这就使得在某些情况下,使用更相损减法比使用辗转相除法更加简单。

辗转相除法(欧几里得算法):

最大公约数

方法一:(一行代码简洁明了)

int GCD(int a,int b)
 
{
     
return b==0?a:GCD(b,a%b);
 
}

 

方法二(递归转为循环):

int gcd(int a, int b)
{
while(b != 0)
{
int r = b;
 b = a % b;
 a = r;
 }
return a;
}

 

最小公倍数:

a*b/GCD(a,b);

a*b/gcd(a,b);

求N个数的最大公约数:

#include <stdio.h>
#include <stdlib.h>

int gcd(int a, int b)
{
    if(a < b) a = a^b, b = b^a, a = a^b;
    int c = a%b;
    while(a%b != 0){
        a = b, b = c, c = a % b;
    }
    return b;
}


int main()
{
    int num[20], n;
    scanf("%d",&n);
    for(int i = 1; i <= n; i++)
        scanf("%d",&num[i]);
    int ans = num[1];
    for(i = 2; i <= n; i++)
        ans = gcd(ans, num[i]);
    printf("%d",ans);
    return 0;

}

同理也可求N个数的最小公倍数,学会举一反三.

更相减损法:

int GCD(int a, int b) {
    while (a != b) {
        if (a > b)
            a = a - b;
        else
            b = b - a;
    }
    return a;
}

stein算法(重点):

欧几里德算法是计算两个数最大公约数的传统算法,无论从理论还是从实际效率上都是很好的。但是却有一个致命的缺陷,这个缺陷在素数比较小的时候一般是感觉

不到的,只有在大素数时才会显现出来:一般实际应用中的整数很少会超过64位(当然现在已经允许128位了),对于这样的整数,计算两个数之间的模是很简单的。对于字长为32位的平台,计算两个不超过32位的整数的模,只需要一个指令周期,而计算64位以下的整数模,也不过几个周期而已。但是对于更大的素数,这样的计算过程就不得不由用户来设计,为了计算两个超过64位的整数的模,用户也许不得不采用类似于多位数除法手算过程中的试商法,这个过程不但复杂,而且消耗了很多CPU时间。对于现代密码算法,要求计算128位以上的素数的情况比比皆是,比如说RSA加密算法至少要求500bit密钥长度,设计这样的程序迫切希望能够抛弃除法和取模。

Stein算法很好的解决了欧几里德算法中的这个缺陷,Stein算法只有整数的移位和加减法。下面就来说一下Stein算法的原理:

  • 若a和b都是偶数,则记录下公约数2,然后都除2(即右移1位);
  • 若其中一个数是偶数,则偶数除2,因为此时2不可能是这两个数的公约数了
  • 若两个都是奇数,则a = |a-b|,b = min(a,b),因为若d是a和b的公约数,那么d也是|a-b|和min(a,b)的公约数。
  • 代码实现:

    int SteinGCD(int a, int b) {
        if (a < b) { int t = a; a = b; b = t; }
        if (b == 0) return a;
        if ((a & 1) == 0 && (b & 1) == 0)
            return SteinGCD(a >> 1, b >> 1) << 1;
        else if ((a & 1) == 0 && (b & 1) != 0)
            return SteinGCD(a >> 1, b);
        else if ((a & 1) != 0 && (b & 1) == 0)
            return SteinGCD(a, b >> 1);
        else
            return SteinGCD(a - b, b);
    }

    递归转循环:

  • int SteinGCD(int a, int b) {
        int acc = 0;
        while ((a & 1) == 0 && (b & 1) == 0) {
            acc++;
            a >>= 1;
            b >>= 1;
        }
        while ((a & 1) == 0) a >>= 1;
        while ((b & 1) == 0) b >>= 1;
        if (a < b) { int t = a; a = b; b = t; }
        while ((a = (a - b) >> 1) != 0) {
            while ((a & 1) == 0) a >>= 1;
            if (a < b) { int t = a; a = b; b = t; }
        }
        return b << acc;
    }

    想要深入了解的话可以看一下大佬的博客,里面讲的挺详细的(附链接):

  • https://blog.csdn.net/Holmofy/article/details/76401074#%E4%BB%A3%E7%A0%81%E5%AE%9E%E7%8E%B0-1
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
暴力穷举是一种简单但不高效的算法,用于解决某些问题的尝试。它通过遍历所有可能的解来寻找正确的答案。然而,由于它的复杂性较高,当问题规模增大时,暴力穷举算法的执行时间会指数增长。因此,它主要适用于规模较小的问题。 辗转相除法是一种被广泛应用于求解最大公约数的算法。它通过反复用较小数去除较大数,直到余数为0为止。最后,被除数即为最大公约数。辗转相除法的优点是它的执行速度相对较快,适用于解决大数的问题。 相减损法也是一种用于求解最大公约数的算法。它通过反复用两个数的差值去替换原来的两个数,直到两个数相等为止。最后,相等的数即为最大公约数。相减损法辗转相除法相比,适用于解决较大数值问题,但它的执行时间会受到较大数值差异的影响。 Stein算法是一种高效的求解最大公约数的算法,同时也被称为二进制法。它结合了辗转相除法相减损法的优点,并通过移位和减法操作等来加速计算过程。相较于传统的算法Stein算法的执行速度快,尤其适用于大数运算。 总结来说,暴力穷举适用于规模较小的问题,而辗转相除法相减损法Stein算法适合解决求解最大公约数的问题。鉴于每个算法的特点和优缺点,我们可以根据具体问题的要求选择合适的算法来解决。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值