如何理解矩阵特征值的意义?

如何理解矩阵特征值的意义?

毕业多年,曾经有同事问我该如何理解特征值的意义?

当时,实在羞愧,我一学数学的,真不知该如何回答。

极力回想,也只能以“特征值的求法、步骤…bla…bla…”应付了事,

答非所问,简直了得!

这样的答案教科书里写得清清楚楚,网上Google/百度一大堆,

人家问的是意义,如何理解其意义?

直扣灵魂,

我真的曾经理解过它的意义吗???

招了吧,真没有!

原在数学系时,教室里,对着黑板一堆密密麻麻的公式,我也是时常神游天外的主…

考试前,为了避免挂科才熬夜突击,对着书本一一比划,至少要演算两到三张稿纸,才能勉强记住方法、步骤,哪还管得着它的意义?

这种突击式的训练记忆,忘得也快,就像写代码一样,过一阵就忘了!

课堂上,老师大多是照本宣科。

当年,

也许是自己知识阅历不够,很难理解其意义,

也许是努力不够,被足球耽误了。

也许是天赋所致,不能顿悟!

总之,确定那时我肯定是没有理解它的意义的。

不知道现在有多少学生还是一样?

在学习一些抽象的数学工具时,代换三、四步之后就不知所云了,往往只能靠记忆强撑,而这种记忆最多维持一周,年轻时可能长点,后来,说忘就忘了…。

有极少数天才,能在抽象世界里面一直转,抽啊抽,一直抽…并最终以此为业。

而大多数人(99+%),一到毕业,就尴尬,因为真的不理解其意义,

看似学了一些高深的数学知识,只会做题,不会运用,根本不理解公式指代符号的现实映射!进而职场上,其它方面训练缺失的短板逐渐显现后,囧是必然!

我想,这不单是数学教育的问题,也是其它各方面可能会尴尬的本源:

不理解意义

好,扯远了,回到正题,来看灵魂之问:

如何理解特征值的意义?

最近才有些感悟,和大家分享一下。

说到特征值λ\lambda,数学上,基本上是指矩阵的特征值

说到矩阵,高等代数几乎一整本书都在讲它,最著名的数学软件叫Matlab,直译为矩阵实验室,足见其高深、复杂!

而这么复杂混乱的东西确有一个特征值, 难道不奇怪?

再说,矩阵到底有多复杂混乱?看数学公式体会一下吧:

这是一堆数,每一个数字都可以在实数域内取值(正、负、零),mnm或n可以无限的延伸,联想到现在的大数据,还有什么东西不能由它表示呢?如果您相信万物皆数,这儿都可以说万物皆矩阵了,万物,能不复杂?

另外,这一堆数既可以表示数据记录,还可以表示某种不知名的抽象运算(物理上叫算子),这样的数学运算,对某些对象集,确仅仅以固有的方式伸缩,且不管它是数据记录还是抽象运算,全都一样!

如此混乱复杂! 确有本征!

这不神奇吗?

数学就是这样,抽象、高级、有理

如果这样说感觉虚,那么先来看一下它精确(枯燥)的数学定义


特征值λ\lambda

AA是一n×nn \times n矩阵,ξ\xi是一nn维非零列向量,若存在一数λ\lambda,使得
Aξ=λξ A\xi=\lambda\xi
则称λ\lambdaAA的一个特征值ξ\xiAA的属于特征值λ\lambda的一个特征向量。

展开Aξ=λξA\xi=\lambda\xi

[a11a12...a1na21a22...a2n............an1an2...ann][x1x2...xn]=λ[x1x2...xn]=[λx1λx2...λxn] \left [ \begin{array}{c} a_{11} & a_{12} & ... & a_{1n} \\ a_{21} & a_{22} & ... & a_{2n} \\ ... & ...& ...&... \\ a_{n1} & a_{n2} & ... & a_{nn} \\ \end{array} \right] \left [ \begin{array}{c} x_{1}\\ x_{2}\\ ...\\ x_{n}\\ \end{array}\right]=\lambda\left [ \begin{array}{c} x_{1}\\ x_{2}\\ ...\\ x_{n}\\ \end{array}\right]=\left [ \begin{array}{c} \lambda x_{1}\\ \lambda x_{2}\\ ...\\ \lambda x_{n}\\ \end{array}\right]

若把矩阵的每一行理解为一个基向量εi\varepsilon_{i},则是表示基向量与该向量的内积εiξ(\varepsilon_{i}\bullet\xi) 等于λxi\lambda x_{i}


感觉公式真的很枯燥的话,就先跳过上面吧。

下面我将从三个方面来试图阐释其意义,以便大家更好的理解。

  • 几何上
  • 医学上
  • 物理上

(一)几何上

如果把矩阵理解为一个坐标系(不一定直角的,也可能是严重变形的“尺子”),有一类向量叫特征向量,其中的任一个向量,在该矩阵上的投影,都只是自身固定的伸缩!

如何理解投影呢?且拿三维来理解吧,一根射线在另外一个坐标系(矩阵)下的影子,其每一轴都会有投影分量,把所有分量组合还原成影子,跟其自身共线,影子射线的长度比值永远固定,这个比值就是特征值,简如下图。

而该比值对这条直线上的所有向量都适应,即无论射线长短。 那么有多少条这样的直线呢?nn维矩阵最多有nn条,每一条的比值(特征值)可能都不一样,有大有小,都代表这一维度的自身特征,故这里大、小意义就明显了。

  • 大可以理解为该维度上尺子的单位刻度大,比如99表示一个单位刻度
  • 小可以理解为该维度上尺子的单位刻度小,比如0.10.1表示一个单位刻度

(二) 医学上

如果把矩阵理解为中医祖传秘籍(乱不外传的),特征向量理解为秘方子(枸杞、百合、红花、童子尿…),特征值就是对该方子的用药量,温、热、寒不同方子特征值不一样, 这样也说得通,如下图!

进一步,把西药制成品也类比为特征向量。比如新冠治疗中的瑞得西韦, 特征值就是该神药该服用多少?还有其它药方子,如莲花清瘟等,假设都能治疗新冠肺炎,但用量肯定是不一样的,即不同特征向量对应的特征值不一。

如此看来,特征值可理解为医学上药物用量的一个刻度,也是中西医互相密而不宣的沟通桥梁,正如下图的λ0\lambda_{0}

(三) 物理上

“遇事不决,量子力学” 戏谑的表明了量子力学的高深、难懂!

且看薛定谔方程的前半部分,就复杂得都让人头晕眼花…

物理学家把这种神操作统称为算子(因为给您解释不清楚~),是不是有点巫师作法、道士占卜的感觉?

不同的是那帮巫师(物理学家),在圈内对不同公式符号都给出了互相认可的解释!

例如:量子力学把世界看成是波动的,如果一个波函数经过一个量子变换后,它仍是一同一个波函数乘一个常量(如上图C)。

再看矩阵,它不也就是一个算子吗?而且还是线性的,如此简单,so easy!

大巫师(物理学家)牛!

这样,特征值的意义又从矩阵的线性上升到非线性统一了。

还是大巫师(物理学家)牛~

总之,就是一段复杂的操作,统称为算子特征值也叫算子的本征值,台湾人习惯这样称呼,同一个意思,英文词源其实来自德语(自身的)。

本来很好理解的概念,几经"转手"之后就晦涩难懂了…

遥想当年,若彼时能有这样的理解,就完美了!

想记这点感悟很久了,

若有缘遇上,能给您带来一点点共鸣,便是满足。

最后附上特征值的求法,以便大家回忆。

附:特征值求法


特征多项式

λEA=λa11a12...a1na21λa22...a2n............an1an2...λann=0 |\lambda E-A|=\left | \begin{array}{c} \lambda-a_{11} & -a_{12} &...&-a_{1n}\\ -a_{21} & \lambda-a_{22} &...&-a_{2n}\\ ... & ... &...&...\\ -a_{n1} & -a_{n2} &...&\lambda-a_{nn}\\ \end{array}\right |=0
它是数域PP上的一个nn次多项式,若是复数域,必有nn个根。每一个根都是矩阵AA的一个特征值

求特征值与特征向量方法步骤

  • 求出特征多项式λEA|\lambda E-A|的全部根
  • 把所求根代入方程组[λEA]X=0[\lambda E -A]X=0中求出一组基础解系,就得到属于相应特征值的线性无关的特征向量

数学之水,更多干货,敬请点击详查~

数学之水

展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客
应支付0元
点击重新获取
扫码支付

支付成功即可阅读