【数字信号处理】卷积和乘法系列3之傅里叶变换对II

40 篇文章 28 订阅 ¥79.90 ¥99.00
本文介绍了傅里叶变换对在数字信号处理中的重要性,通过采样、香农-奈奎斯特抽样定理、正弦与冲激的关系,以及脉冲与Sinc函数的傅里叶变换对,详细阐述了信号在时域与频域的相互作用。文中结合MATLAB代码展示了不同变换的过程和结果。
摘要由CSDN通过智能技术生成

关注公号【逆向通信猿】更精彩!!!

声明:底部的小广告标签并不是博主所加!!

采样

傅里叶变换对(FT)很重要的原因是,如果有一个连续时间 (CT) 信号,则可以通过将信号乘以梳状函数来对其进行采样,产生的样本将只是尖峰处的值。采样过程产生离散时间 (DT) 信号,因为采样后仅在采样时间知道连续信号的值。

我们可以对此进行建模,尽管一个明显的问题是我们希望从连续信号开始,而计算机只能保存离散值。我们可以(某种程度上)通过对我们想要处理的信号进行大规模过采样来克服这个问题。

图1显示了由两个正弦(黑色)之和组成的信号,该信号通过乘以梳状函数(蓝色)进行采样,以产生离散的样本数据(红色虚线、三角形)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

codersnote

对学生党 赞赏是鼓励也是鞭策!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值