目前国内超好用的AI写作工具有哪?


我最开始接触到的AI工具就是ChatGPT,但是每个月20美元的价格,对普通打工人真的不便宜,于是我就开始挖掘一些国内免费好用的AI写作工具。

之所以用AI写作就是因为写作工作繁重,经常会遇到毫无思路,灵感枯竭,半天也敲不出一行字的情况,时间紧、任务重的时候更是头疼。随着对AI写作工具的深入使用,我发现它真的是一个整理思路、激发创意、提升效率、保证质量的好帮手。

所以把我常用的免费的AI写作工具分享给大家,一起告别写作瓶颈!

一、智谱清言:全类型文案写作

智谱清言是可以写很多种类型文案的全能型AI工具,支持多方面的文字生成需求。

它采用的是一对一对话式的聊天场景,输入提示词,AI就会自动生成文案回答,包括但不限于策划方案、营销内容、论文大纲、自媒体创作、商业计划书、短视频脚本。

简单的说,就是你想写什么文案,直接提问它,就能得到回答。这样原本要花费半天才能写完的内容,现在可能十秒钟就完成了。

作为内容运营,经常需要写太多类型的文案,AI写作不仅提供新的思路和方案,还能让文案编写效率提升90%!

我一般直接输入写作要求:

然后再输入文案主题和要求,这样一篇文案轻轻松松就生成了,比我自己码字快太多了,省心又省力!

其他职业像是学生、老师、活动策划、短视频运营、自媒体从业者都可以用智谱清言来写作。

我一朋友当老师的,以前每天花几小时写教案,后来换成AI工具来写,输入指令后几十秒就轻松生成了,包括教学目标、教学重难点、教学环节,都能清晰地规划出来,让教学准备工作变得异常简单,多出来的时间就可以去学习、健身、娱乐,何乐不为呢?

比如在对《背影》这篇课文备课的时候,直接在智谱清言提问,得到的回答清晰明了,备课效率杠杠的!

AI写作的关键点,一是挑选合适的AI工具,二是学会用AI进行有效互动,生成满意的文案。与智谱清言同类型的AI写作工具还有:文心一言、豆包AI、讯飞星火、通义千问、Kimi等等,这类工具的使用方法类似。

而且用这些AI工具写作有通用的步骤:

1. 明确写作目的和写作对象,即你是谁,你要写给谁;

2. 整理写作人物和背景素材,并将这些文字投喂给AI;

3.提出写作要求,给AI一些在写作风格、文案字数等方面的限制;

4. 整理好上述的所有指令后,发送给AI,等待内容产出;

5. 待AI产出写好的文案后,看是否得到了满意的回答,有问题的地方需要微调指令,继续让AI修改,直到生出基本满意的回答;

6. 最后对AI写作内容进行检查修改,完成内容定稿。

在使用AI写作的过程中,我们要把AI当做一个有着超级大脑但还没开发好的小孩,他的理解能力不太好,所以需要我们用提示词去调教。

除了通用型的AI写作工具外,还有一些独立场景的AI写作工具,可以满足某一垂直领域的写作需求。

比如公文写作、带货脚本、英文写作、论文写作、小说等等,继续给大家分享。

二、新华妙笔:公文写作

我周围还有不少朋友在体制内工作,他们有一个共同的烦恼就是写公文!

尤其是刚入职的小白,素材内容不知道从哪收集,文章质量写得也不高,公文格式还常常搞错,加班干货就成了常态,费心又费力。

于是就有朋友问我有没有专门写公文的AI工具,我就推荐了新华妙笔。

新华妙笔是专门进行公文写作的AI工具,是这一垂直领域的职场人不可或缺的AI助手。

它使用起来非常简单,不仅已经按照公文“模板分类”和“模板类型”进行整理,同时也不需要大家逐条整理提示词,只需要按照写作步骤一步一步操作即可。

输入标题和关键词后,剩下的全部交给AI去处理。完成公文写作后,新华妙笔还能进行AI校对、AI续写、AI润色,大大降低了修改润色的工作量!

三、即创AI:短视频/直播带货脚本

当下抖音/快手/小红书/淘宝等平台流量巨大,短视频和直播带货也非常火爆,而且不少人通过短视频/直播带货赚得盆满钵满。

从事这方面的运营者工作之一就是写短视频/直播带货脚本。创作的文案需要根据选题策划、选品排品、营销方案来一一撰写,同时这些文案也会影响到账号的涨粉和变现,当很多人还在为了短视频/直播脚本发愁的时候,小部分人已经用上了AI工具,快速生成短视频/直播脚本。

即创AI就是抖音推出的智能生成短视频/直播脚本的AI工具,大大降低了脚本内容的生产门槛。

如果你是在抖音做短视频带货,找到“即创AI”的“AI视频脚本”功能,输入商品ID、推广场景、产品名称、产品卖点后,就能一键生成该商品的短视频脚本文案,而且现阶段都是免费的!

即创AI除了写短视频/直播脚本之外,还可以免费生成AI图片、生成图文短视频、生成数字人直播,可以满足创作者在抖音运营上的多种需求,感兴趣的自己试一试。

四、有道写作:英文写作

有道写作是网易有道推出的AI辅助写作工具,如果需要写英文文章、邮件、论文,就可以直接用它,还能提供润色、扩写、总结、批改等功能。

学生可以用有道写作进行英语写作练习,英语老师或者家长也可以用有道写作给孩子批改英语作业,省心还省力!

大家可以根据自己的需求来选择AI写作工具。

如果你对市面上的AI工具分类和使用方法了解不多,你不需要全部搞懂,但是主流的AI工具一定要了解,不仅可以实现AI写作,还有AI作图、AI生成思维导图,AI数据分析等,对工作方方面面全部提效!

还有关键的一点是,如果单一的AI写作工具无法满足你的写作需求,那我建议大家混合使用各类AI写作工具,各取所长!

以下是几种主流深度学习框架的功能介绍: 1.PyTorch • 动态计算图:PyTorch采用动态计算图,允许用户在运行时构建和修改计算图,这使得调试和开发更加灵活。 • 自动求导:提供了强大的自动微分机制,能够自动计算梯度,极大地简化了神经网络的训练过程。 • 易用性与灵活性:代码风格接近Python,简洁易懂,与Python数据科学栈(如NumPy)高度集成。 • 分布式训练与混合精度训练:支持多GPU和多节点的分布式训练,以及混合精度训练,可显著加速训练过程。 • 社区支持:拥有活跃的社区和丰富的资源,适合学术研究和工业级应用。 2.TensorFlow • 静态计算图:TensorFlow采用静态计算图,在训练前需要先构建完整的计算图,适合大规模分布式训练和生产级部署。 • TensorBoard可视化:提供了强大的可视化工具TensorBoard,可用于监控训练过程、分析模型性能。 • 丰富的API和工具:支持多种硬件加速,提供了从底层到高层的丰富API,满足不同层次用户的需求。 • 模型部署:通过TensorFlow Serving等工具,可以方便地将模型部署到生产环境中。 3.Keras • 高层API:Keras是一个高层神经网络API,运行在TensorFlow等框架之上,以简单易用、高度模块化著称。 • 快速构建模型:提供了Sequential和Functional API两种模型定义方式,适合快速构建和测试神经网络。 • 数据预处理:内置了多种数据预处理函数,如独热编码、序列填充等。 • 模型评估与调优:支持使用回调函数(如EarlyStopping和学习率调度器)来优化训练过程。 4.其他框架 • Caffe/Caffe2:主要用于计算机视觉任务,支持卷积神经网络(CNN),以高效的训练和推理速度著称。 • MXNet:支持灵活的模型定义和高效的分布式训练,适合大规模数据集。 • PaddlePaddle:百度开发的深度学习框架,支持多种硬件加速,提供了丰富的预训练模型和工具。 • Deeplearning4j:基于Java的深度学习框架,适合在Java生态中使用。 深度学习框架的通用功能 1. 数据预处理:大多数框架提供了数据加载、预处理(如归一化、标准化、数据增强等)的工具。 2. 模型定义:用户可以通过内置的层(如全连接层、卷积层等)快速搭建神经网络。 3. 训练与优化:支持多种优化算法(如SGD、Adam等),并提供自动求导功能。 4. 模型评估与部署:可以对模型进行评估,并通过工具将模型部署到生产环境中。 这些框架各有优势,选择时可以根据具体需求、开发习惯和项目规模来决定。以下是关于大模型搜索引擎和级计算模板的相关信息: 大模型搜索引擎 1. 博查AI搜索 • 国内首个支持多模型的AI搜索引擎,集成了通义千问、字节云雀、月之暗面Kimi等多个顶尖AI大模型。 • 提供干净、无广告的搜索体验,支持实时信息获取和多模型切换,能够直接生成问题的答案,而非传统搜索引擎的链接列表。 • 其AI智能体深度回答功能(内测中)可提供更丰富、深入的搜索结果。 • 网址:[]()。 2. 秘塔AI搜索 • 能够深入理解用户问题,提供无广告、直达结果的搜索体验。 3. 卡奥斯智能交互引擎 • 专注于工业知识智能搜索和解决方案精准生成,融合智能检索、应用和多模态连续交互功能,以“大连接、大数据、大模型”为基础技术。 4. 360AI搜索 • 结合大模型与搜索技术,注重用户体验,通过多步推理和慢思考模式提高答案质量和准确性。 5. 知乎直答 • 利用知海图AI大模型处理内部文本数据,并整合其他网站文章,生成丰富参考答案。 6. 天工AI搜索 • 搭载天工大模型,提供智能、高效、快速的搜索体验,支持全网信息搜索、智能聚合,并可将结果整理为脑图和大纲。 7. Perplexica • 开源AI驱动搜索引擎,可使用Grok和OpenAI等模型本地运行,适用于学术研究、写作等场景。 8. MindSearch • 基于LLM的多代理框架,通过WebPlanner和WebSearcher模拟人类多步信息寻求和整合过程,能够从大规模网页中并行寻求和整合信息。 级计算模板 • AI级计算机 • 专为人工智能应用设计的高性能计算系统,能够处理和分析海量数据,支持复杂的机器学习和深度学习任务。 • 典型应用场景包括语言大模型、视觉大模型和多模态大模型的训练,广泛应用于自动驾驶、智能安防、医学影像等领域。 • 开源AI搜索引擎技术栈 • 一些开源AI搜索引擎(如OpenPerPlex、LangChain-SearXNG等)结合了多种技术,包括语义分块、搜索引擎集成(如SearXNG)、大模型(如Llama 3)和推理引擎(如Groq),为开发者提供了强大的技术框架。 这些工具和平台为大模型的应用和开发提供了丰富的支持,用户可以根据具体需求选择合适的搜索引擎或计算模板。在讨论如何通过编程实现更环保、低排放的生成式AI时,需要从多个方面来考虑“更好”的编程方式。这里的“更好”可以包括更高的效率、更低的能耗、更简洁的代码以及对环境影响的最小化。以下是一些具体的建议和方向: --- 1.选择合适的编程语言 不同的编程语言在性能、开发效率和资源消耗方面各有优劣。对于开发低能耗的AI应用,以下语言可能是较好的选择: Python • 优点: • 丰富的库和框架:Python是深度学习和AI领域的主流语言,拥有大量的开源库(如TensorFlow、PyTorch、Keras等),这些库经过优化,能够高效地利用硬件资源。 • 易读性和开发效率:Python语法简洁,易于理解和维护,适合快速开发和迭代。 • 社区支持:拥有庞大的开发者社区,遇到问题时更容易找到解决方案。 • 优化方向: • 使用高效的Python库(如NumPy、Pandas)进行数据处理。 • 利用JIT编译器(如Numba)加速Python代码的执行。 • 避免不必要的循环和复杂的数据结构,减少内存占用。 C++ • 优点: • 高性能:C++在执行效率上优于Python,尤其是在大规模数据处理和复杂计算任务中。 • 底层控制:能够直接操作硬件资源,适合对性能要求极高的场景。 • 优化方向: • 使用高效的算法和数据结构。 • 利用多线程和并行计算技术充分利用多核CPU。 • 结合CUDA等技术加速GPU计算。 Julia • 优点: • 高性能与易用性:Julia在性能上接近C++,同时语法简洁,类似于Python。 • 内置并行计算支持:Julia原生支持多线程和分布式计算,适合大规模并行任务。 • 优化方向: • 利用Julia的内置并行计算功能,减少计算时间。 • 使用预编译的包和库,避免运行时的性能开销。 --- 2.编程实践中的优化策略 无论选择哪种语言,以下编程实践都能帮助降低能耗和提高效率: 高效的数据处理 • 避免重复计算:缓存中间结果,避免重复执行相同的计算。 • 批量处理:将数据分批处理,减少I/O操作和内存占用。 • 数据压缩:在不影响模型性能的前提下,对数据进行压缩以减少存储和传输成本。 代码优化 • 减少不必要的循环和递归:优化算法复杂度,减少不必要的计算。 • 使用内置函数和库:内置函数通常经过优化,比自定义实现更高效。 • 内存管理:合理管理内存分配和释放,避免内存泄漏。 并行计算 • 多线程和多进程:利用多核CPU的计算能力,将任务分配到多个线程或进程中。 • GPU加速:对于深度学习任务,使用GPU加速可以显著减少计算时间和能耗。 • 分布式计算:对于大规模任务,可以使用分布式计算框架(如Apache Spark)将任务分配到多个节点上。 --- 3.开发环境和工具的选择 • 使用高效的IDE:选择支持代码优化、性能分析和调试的集成开发环境(如PyCharm、Visual Studio Code)。 • 性能分析工具:使用性能分析工具(如Python的cProfile、C++的gprof)来识别代码中的性能瓶颈。 • 代码审查:定期进行代码审查,优化算法和数据结构,减少冗余代码。 --- 4.环境友好型编程的额外建议 • 选择绿色云计算服务:使用采用可再生能源的数据中心,减少碳排放。 • 模型优化:选择更高效的模型架构,避免过度复杂的模型。例如,使用轻量级模型(如MobileNet)代替大型模型。 • 资源管理:合理规划硬件资源,避免过度配置。例如,根据任务需求动态调整GPU资源。 --- 总结 选择“更好”的编程语言和实践需要综合考虑任务需求、开发效率和环境影响。Python是目前AI领域的主流选择,适合快速开发和迭代;C++适合对性能要求极高的场景;Julia则在性能和易用性之间取得了很好的平衡。无论选择哪种语言,通过优化代码、利用并行计算和选择绿色计算资源,都可以显著降低生成式AI的碳排放,实现更环保的编程目标。
最新发布
03-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值