目前kimi算不算国内顶级的AI?

利用AI工具批量生成影视短剧推广icon-default.png?t=N7T8https://docs.qq.com/doc/DYnl6d0FLdHp0V2ll 从用户体验上讲,我觉得 Kimi 算得上国内的顶级 AI。 现在的大模型产品遍地开花,底层模型原理差异不大,想要在这样的市场环境中生存下来并赢得普通用户认可,就需要在某个方面角度有特长,搞差异化竞争。而 Kimi 能成功,就在于专注于用户体验。

一键生成 PPT

Kimi 最新支持了 PPT 生成功能,可以帮助我们整理文字内容,梳理 PPT 大纲,再一键生成 PPT 文档和样式。

举个例子,我上传给 Kimi 一份人工智能的讲稿,然后直接@PPT助手要求他解析文稿内容并制作 PPT 大纲:

在得到大纲之后,底部会有一个「一键生成 PPT」:

然后通过场景、风格、颜色来筛选并确定 PPT 模板:

选好之后点击生成 PPT,稍等片刻就会得到这样一份完整的 PPT,而且可以看到生成渲染的过程,就像真的有一个 AI 员工在一步一步制作 PPT 一样,非常解压:

之后,还可以在线进行编辑、放映,或者生成 PPT 拼接长图或者下载为 ppt 文件:

生成 PPT 的整个过程非常丝滑流畅,Kimi 用心了。

过去我们自己手动做 PPT,可能需要半小时甚至更长的时间,而现在,AI 只需要几秒钟就能完成。AI 对工作的提升效率真的很大,而且已经从单纯的文字编辑延伸到了数据分析、PPT 制作、图片甚至视频制作。

Kimi Chat:不只聊天

ChatGPT 奠定了这一类产品作为聊天工具的基调,但它们的功能显然不只聊天,聊天只是一种表现形式,基于指令可以扮演很多角色,完成丰富的任务。

我还挺喜欢 Kimi 首页给出的推荐对话示例,某种程度上这也算是 Kimi 官方给我们发散使用场景的教学,而且这些推荐还经常会更新,比如前几天的是「抽象工牌」、「跑团游戏」:

最新的则是「无限流小说」、「电子 AI 卿」:

比如无限流小说这个,其实就是一套不错的 prompt 模板,会以「角色、背景、设定、技能、目标、限制、输出条件、工作流程、示例」给出指令,挺适合 prompt 新手学习的:

不过这些也就图一乐,偶尔激发一下灵感。我日常使用最多的还是下面几个场景:

摘要总结

生成式 AI 在回答开放性问题时会有幻觉(不过可以用来发散思维),但反过来,输入一定的参考资料,给定简单明确的任务指令,AI 的表现还是比较靠谱的,摘要总结就是 AI 最甜点舒适的场景。

想要让 Kimi 做摘要总结,直接把链接扔给它就好了:

摘要总结其实还有个玩法,就是对视频的摘要。B 站评论区就有很多这样的 AI 小助手,其实就是通过读取字幕 / AI 语音转文字的内容,然后进行摘要。

相比于直接总结网页,我会在总结音频转录文本的 prompt 里加上一句:「以下内容为录音转文字生成,可能有部分拼写错误,请在后续回答中自动修正拼写错误」,其实相当于把 AI 的任务分解成了「纠正拼写错误」和「摘要总结内容」两步,这样得到的效果就会好很多了,大家可以试一下。

读论文

我非常推荐苏佬基于 Kimi 做的读论文工具 Papers.cool,刷论文效率不要太高,直接扔 PDF 或者链接进行论文解读的问答就可以了。

流程图

之前调研 AI 流程图制作的时候发现,虽然各家 AI 都能生成流程图的文本,比如 Mermaid 或者 UML 语言,但这些工具都是纯文本的,并不支持在线渲染出图片效果。

而 Kimi 就比较贴心,支持前端直接渲染出流程图,你只需要提供文本和要求,Kimi 就可以帮助我们提炼其中的逻辑关系并画出流程图、思维导图:

从常用语到 Kimi+:个性化助手

Kimi 在产品方面的细节还有很多,比如大家都知道想要让 AI 助手生成更好的效果,需要学习如何写出更好的 Prompt,而 Kimi 则为我们提供了许多 Prompt 模板案例,也可以自定义常用语:

如果不会写 Prompt 也没关系,只需要到 Kimi+ 中,找到「提示词专家」,就能在 AI 助手的辅助下优化生成结构化的提示词:

比如想要设计一个利用词缀、词源法来记忆英语单词的 Prompt,我们自己一般只会简单地描述一下需求,不会给出特别具体的指令。在提示词大师的帮助下,可以得到一份完整的提示词,包含了角色、背景、设定、技能、目标、限制、输出格式、工作流程、示例、初始对话等等。

如果没有这样结构化的 Prompt,得到的回复相对就会比较简单直接:

而只要根据提示词大师的建议修改提示词之后,就能得到更符合教学使用的词根、词缀分析、例句、联想记忆法等内容:

除了上面这种单一的助手模板,我们还可以@多个助手共同完成一项任务。比如有一段英文介绍,我们可以先让@翻译通完成翻译任务,然后@小红书爆款生成器来撰写笔记:

这样的玩法简直就像自己手下有 N 多个 AI 员工一样,打工人也能翻身做老板使唤 AI 了。

除此以外,Kimi 还提供了多端功能,App 和小程序都挺好用的,最近还新出了浏览器插件,唤起和查询更加方便了。

大家推荐哪些 AI 工具?平时又是如何使用 AI 辅助办公的,可以在评论区交流一下。

### 国内AI软件在数学和编程方面表现 #### 一、国内AI软件概述 在国内AI技术的发展迅速,在多个领域取得了显著成就。特别是在教育和技术辅助工具方面,出现了许多优秀的AI解决方案[^4]。 #### 二、具体应用场景中的表现 ##### (一)数学教学支持 智启新程项目展示了如何利用人工智能改善高中阶段的数学教学质量。该项目不仅收集并分析大量学生的学习行为数据,帮助老师更好地理解每位同学的需求,同时也提供了智能化评估系统来提高作业批改的质量与速度。这种做法使得个性化辅导成为可能,极大地促进了学生的成长与发展[^3]。 ##### (二)编程能力增强 对于编程而言,某些领先的国产AI平台如Kimi和智谱清言展现出了强大的功能性和广泛的适用场景。这些工具可以有效地协助开发者完成复杂的编码任务,提供自动补全建议、语法检查以及潜在错误预警等功能,从而提高了工作效率。此外,它们还能针对特定行业需求定制化服务,满足不同用户的特殊要求。 #### 三、与其他产品的比较 相较于国际上知名的MATLAB这类专注于高效矩阵计算的专业级产品来说,虽然国内的一些通用型AI框架或许无法完全替代前者在高性能数值处理上的地位,但在易用性、本地化适配度等方面往往更具优势。更重要的是,随着中国本土市场需求的增长和技术积累加深,未来有望看到更多专精于某一细分市场的优秀作品涌现出来[^2]。 ```python import numpy as np # 创建两个随机数组成的矩阵A(3x2), B(2x3) matrix_A = np.random.rand(3, 2) matrix_B = np.random.rand(2, 3) def matrix_multiply(A, B): """ 实现简单的矩阵乘法函数。 参数: A (numpy.ndarray): 左侧输入矩阵 B (numpy.ndarray): 右侧输入矩阵 返回: C (numpy.ndarray): 结果矩阵C=A*B """ try: result_matrix = np.dot(A, B) return result_matrix except ValueError as e: print(f"Error occurred during multiplication: {e}") return None result_C = matrix_multiply(matrix_A, matrix_B) print("Matrix Multiplication Result:\n", result_C) ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值