memory.limit(248000)
rm(list=ls())#清除当期环境变量
setwd('C:\\Users\\lenovo\\Desktop\\GSE55696\\ann')
library(reshape2)
library(knitr)
library(ggfortify)
library(cluster)
library(ggplot2)
group_list=c(rep("CG",times=19),rep("LGIN",times=19))#分组
a2= read.csv("C:\\Users\\lenovo\\Desktop\\GSE55696\\ann\\a2.csv")#表达矩阵
a2=a2[,2:39]
colnames(a2)[1]="symbol"#列名命名
a3=melt(a2)
#kable(data,format="markdown") #kable函数就是显示所有的内容数据
#a4<-melt(a2,id.vars=c("symbol"),variable.name="sample",value.name="values") 数据变形
#colnames(exp_L)=c('symbol','sample','value') 命名列名
a4$group = rep(group_list,each=nrow(a2))#a4增加一列group,复制
library(limma)
a3 = normalizeBetweenArrays(a3[3:3])#对表达量进行标准化消除批次差异,从图中可以看到两个分组control和treat基本在一条线上,这样的数据说明可以进行后续比较,如果不在一条线上说明有批次效应batch infect,需要用limma包内置函数normalizeBetweenArrays人工
GEO数据预处理(下)
最新推荐文章于 2024-10-18 18:39:04 发布