R下运行UMAP方案

本文介绍了如何在R环境中通过两种方式实现UMAP降维,推荐使用通过conda创建新环境并安装umap-learn包,然后在R中利用reticulate库调用该环境进行UMAP计算。详细步骤包括conda环境管理、安装所需库以及在R中配置python环境。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

UMAP降维方案实现有两种方案:

1、使用R自带的uwot包来实现,查阅相关资料发现使用下列语句可以实现,当然需要提前library(“uwot”)

scc.1 <- RunUMAP(scc,dims = 1:50,
                 umap.method = 'uwot',
                 metric = 'cosine') 

2、调用python的UMAP-learn包

          这一方案实现起来有两种思路:

2.1、直接在R中进行umap-learn 包的安装。

2.2、在python中安装umap-learn包,然后再r中设置好python环境进行调用。

这里我推荐使用第二种方案,步骤如下:

2.3

conda info -e #检查目前conda 的环境

创建一个环境,名称随便选就好,并激活

conda activate r

接下来就是在你的环境中安装下列包

conda install numpy scipy

conda install scikit-learn

conda install numba

pip install umap-learn

最后检查一下umap-learn安装成功没有

conda list

到此python下umap-learn包的配置就完成了,接下来进入R配置

首先在R中设置python conda 的环境为umap-learn包安装的环境,重启R。


library(reticulate)#加载python环境
py_config()#查看pytho

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值