一、Dijkstra算法(单源最短路径)
1、问题描述
给定带权有向图G = (V, E),其中每条边的权是非负实数。另外,还给定V中的一个顶点v,称为源点。现在要计算从源到所有其它各顶点的最短路径长度,假设从源可以到达任何一个顶点。这里路径的长度是指路径上各边权之和。这个问题通常称为单源最短路径问题。
输入:多组测试数据。每组测试数据的第一行输入图G中顶点的个数n( n<1000);后续n行n列输入图G的权值矩阵C,其中第i行第j列的值表示从第i个顶点到第j个顶点的有向边的权值,如果为-1表示从第i个顶点到第j个顶点没有边相连。默认第一个顶点为源点。
输出:从源到所有其它各顶点的最短路径长度之和。每组测试数据输出一行。
2、算法思想
从源点到任意顶点的最短路径具有最优子结构性质: 即最短路径的子路径也是源到相应顶点的最短路径。
贪心策略:选择从源点v出发目前用最短的路径所到达的顶点。
算法思想:
(1)由近到远逐步计算,每次最近的顶点的距离就是它的最短路径长度。
(2)然后再从这个最近者出发。即依据最近者修订到各顶点的距离,然后再选出新的最近者。
(3)如此走下去,直到所有顶点都走到。
3、算法
Dijkstra()
{ S:={1}; //初始化S
for i= 2 to n do //初始化D
dis[i] =C[1, i] ; //初始时为源到顶点i一步的距离
for i =1 to n-1 do
{
从V-S中选取一个顶点u使得dis[u]最小;
将u加入到S中;//将新的最近者加入S
for ∀ w∈V-S do //依据最近者u修订dis[v]
dis[w] = min(dis[w] , dis[u]+C[u ,w])
}
}
4、算法分析
Dijkstra算法的时间复杂度为 O(n2)