data_pd.value_counts()和data_pd.groupby(by='类别').goups

data = [['青年', '否', '否', '一般', '否']
        , ['青年', '否', '否', '好', '否']
        , ['青年', '是', '否', '好', '是']
        , ['青年', '是', '是', '一般', '是']
        , ['青年', '否', '否', '一般', '否']
        , ['中年', '否', '否', '一般', '否']
        , ['中年', '否', '否', '好', '否']
        , ['中年', '是', '是', '好', '是']
        , ['中年', '否', '是', '非常好', '是']
        , ['中年', '否', '是', '非常好', '是']
        , ['老年', '否', '是', '非常好', '是']
        , ['老年', '否', '是', '好', '是']
        , ['老年', '是', '否', '好', '是']
        , ['老年', '是', '否', '非常好', '是']
        , ['老年', '否', '否', '一般', '否']]
data_pd = pd.DataFrame(data, columns=['年龄', '有工作', '有自己的房子', '信贷情况', '类别'])

data_pd.head(3)

 年龄有工作有自己的房子信贷情况类别
0青年一般
1青年
2青年

data_pd['年龄'].value_counts()

老年    5
中年    5
青年    5
Name: 年龄, dtype: int64

data_pd.groupby(by='类别').groups

{'否': Int64Index([0, 1, 4, 5, 6, 14], dtype='int64'),
 '是': Int64Index([2, 3, 7, 8, 9, 10, 11, 12, 13], dtype='int64')}

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值