函数空间

1.问题的提出

1.1什么是数学空间?

  1. 研究工作的对象和遵循的规则
  2. 元素和机构(线性结构:加法和数乘; 拓扑结构:距离、范数、开集)
  3. 是很多工程学甚至社会科学的语言
    在微积分里可以定义极限和连续,依赖于距离
    ∀ ε &gt; 0 , ∃ δ &gt; 0 ( ∣ x − x 0 ∣ &lt; δ ) ⇒ ( ∣ f ( x ) − f ( x 0 ) ∣ &lt; ε ) \begin{array}{l}{\forall \varepsilon&gt;0, \quad \exists \delta&gt;0} \\ {\left(\left|x-x_{0}\right|&lt;\delta\right) \Rightarrow\left(\left|f(x)-f\left(x_{0}\right)\right|&lt;\varepsilon\right)}\end{array} ε>0,δ>0(xx0<δ)(f(x)f(x0)<ε)

2. 距离、范数(曲线距离)

2.1 向量

x = ( x 1 , ⋯ &ThinSpace; , x n ) x=\left(x_{1}, \cdots, x_{n}\right) x=(x1,,xn) y = ( y 1 + … , y n ) y=\left(y_{1}+\dots, y_{n}\right) y=(y1+,yn)的距离

情形1

d 1 ( x , y ) = ( x 1 − y 1 ) 2 + ⋅ ⋅ ⋅ + ( x n − y n ) 2 d_{1}(x, y)=\sqrt{(x_{1}-y_{1})^2+···+(x_{n}-y_{n})^2} d1(x,y)=(x1y1)2++(xnyn)2

这是我们学过的最常见的距离,也就是直线距离。

情形2

d 2 ( x , y ) = = m a x { ∣ x 1 − y 1 ∣ + ⋯ + ∣ x n − y n ∣ } d_{2}(x, y)==max\{\left|x_{1}-y_{1}\right|+\dots+\left|x_{n}-y_{n}\right|\} d2(x,y)==max{x1y1++xnyn}

这是一种折线距离。折线之中取最大的(现实比较常见,因为两点之间,可能直线无法跨越)。

情形3

d 3 ( x , y ) = ∣ x 1 − y 1 ∣ + ⋯ + ∣ x n − y n ∣ d_{3}(x, y)=\left|x_{1}-y_{1}\right|+\dots+\left|x_{n}-y_{n}\right| d3(x,y)=x1y1++xnyn

2.2 函数

函数 f ( x ) f(x) f(x)到函数 g ( x ) g(x) g(x)的距离

情形1

d 1 ( f , g ) = ∫ a b ( f ( x ) − g ( x ) ) 2 d x d_{1}(f, g)=\int_{a}^{b}(f(x)-g(x))^{2} dx d1(f,g)=ab(f(x)g(x))2dx

也就是相互抵消之后,面积就是它的距离。

情形2

d 2 ( f , g ) = max ⁡ a &lt; x &lt; b ∣ f ( x ) − g ( x ) ∣ \begin{aligned}d_{2}(f, g)=\max _{a&lt;x&lt;b}|f(x)-g(x)|\end{aligned} d2(f,g)=a<x<bmaxf(x)g(x)

也可以取二者的最大值,但是注意不可以取最小值。比如两条直线有一个交点,如果取了最小值也就是0的话,按照一些距离的定义,这两条曲线是一条线,但是不是。所以我们要取最大值,最大值也是0的时候,这两条曲线才是同一条直线。

情形3

d 3 ( f , g ) = ∫ a b ( f ( x ) − g ( x ) ) k d x d_{3}(f, g)=\int_{a}^{b}(f(x)-g(x))^{k} d x d3(f,g)=ab(f(x)g(x))kdx

也可以是任意次方,但是需要注意,如果是奇数次方,里面应该打上绝对值。

2.3 那么我们究竟怎么定义距离呢?

前面我们看到了,距离有这么多种计算方式,但是究竟什么是距离呢?我们应该抓住:不是具体指它是什么,而是有什么属性的对象是它。
这么说可能有点绕,举个栗子:如果我问你什么是苹果,你可能告诉我,红红的,圆形,带有红晕,吃起来很甜,但是我如果问你什么是水果,你就没办法具体描述了,因为苹果是红的,橘子是黄的,西瓜是绿的,有的甜,有的酸,有的是圆的,但是有的水果是方的,我们只能通过描述可以吃、水分较多的植物果实等等属性来进行定义。

定义:设 x x x是一非空集合,任给一对这一集合的元素 x , y x,y x,y,都给定一个实数 d ( x , y ) d(x,y) d(x,y)与它们对应,并且满足:
( 1 ) d ( x , y ) ≥ 0 , d ( x , y ) = 0 ⇔ x = y ( 2 ) d ( x , y ) = d ( y , x ) ( 3 ) d ( x , y ) ≤ d ( x , z ) + d ( z , y ) \begin{array}{l}{(1) \quad d(x, y) \geq 0, d(x, y)=0 \Leftrightarrow x=y} \\ {(2) \quad d(x, y)=d(y, x)} \\ {(3) \quad d(x, y) \leq d(x, z)+d(z, y)}\end{array} (1)d(x,y)0,d(x,y)=0x=y(2)d(x,y)=d(y,x)(3)d(x,y)d(x,z)+d(z,y)
则称 d ( x , y ) d(x,y) d(x,y)是这两点之间的距离。

其实翻译一下,这三个条件就是在说:

  1. 自身和自身的距离应该是0,而自身和其他的距离应大于0。
  2. A和B的距离与B和A的距离应该是相同的。
  3. A和B的距离与B和C的距离之和要大于等于A和C的距离

这就是教我们使用这种方式去描述抽象概念,也就是抓它最重要的属性。

2.4 线性空间

定义了加法和数乘的空间就是线性空间。这是对空间概念的一个具体化。就类似于下面的水果的概念具象到了热带水果。

2.5 度量空间

距离的定义是多种多样的。只要满足距离的三条性质,就可以被认为是一种距离。而定义了距离以后的空间又被叫做度量空间。

范数

有了度量空间后还不够,我们需要知道向量本身的大小。于是我们引入了范数的概念。范数同样需要满足非负性和三角不等式,但范数还有一个条件,也就是第2点。

定义:设 ∣ ∣ x ∣ ∣ ||x|| x R n R^n Rn的范数,若满足:

  1. ∥ x ∥ ≥ 0 , ∀ x ∈ R ∗ : ∥ x ∥ = 0 ⇔ x = 0 \|x\| \geq 0, \quad \forall x \in R^{*} :\|x\|=0 \Leftrightarrow x=0 x0,xR:x=0x=0
  2. ∥ α x ∥ = ∣ α ∣ ∥ x ∥ , ∀ α ∈ R , x ∈ R ∗ \|\alpha x\|=|\alpha|\|x\|, \quad \forall \alpha \in R, x \in R^{*} αx=αx,αR,xR
  3. ∣ ∣ x + y ∥ ∣ ≤ ∥ x ∥ + ∥ y ∥ . ∀ x , y ∈ R ∗ | | x+y\| | \leq\| x\|+\| y \| . \quad \forall x, y \in R^{*} x+yx+y.x,yR

简单看成到零点的距离多了第2点。因此范数比距离更加具体。

注1:由范数可以定义距离 d ( x , y ) = ∥ x − y ∥ d(x,y)=\|x-y\| d(x,y)=xy
注2:但是距离不一定可以范数,例如 ∥ x ∥ = d ( 0 , x ) \|x\|=d(0,x) x=d(0,x)但是 ∥ α x ∥ = d ( 0 , x ) \|\alpha x\|=d(0,x) αx=d(0,x) ∣ α ∥ x ∥ |\alpha \|x\| αx

2.6 赋范空间

定义了范数的空间被称为赋范空间,完备的赋范空间称为巴纳赫空间

2.7 内积空间

赋范空间有向量的模长,即范数,但是还缺乏一个很重要的概念——两个向量的夹角。这时候我们引入内积的概念。
定义:设 ( x , y ) ∈ R (x,y) \in R (x,y)R,且满足:

  1. 对称性
  2. 对第一变元的线性性;(也就是 α \alpha α可以提出来)
  3. 正定性

则称 ( x , y ) (x,y) (x,y)为内积。例:

( x , y ) = ∑ i = 1 n x i y i (x, y)=\sum_{i=1}^{n} x_{i} y_{i} (x,y)=i=1nxiyi

( f , x ) = ∫ − ∞ + ∞ f ( x ) g ( x ) d x (f, x)=\int_{-\infty}^{+\infty} f(x) g(x) d x (f,x)=+f(x)g(x)dx
内积可以导出范数。反之不可,因为内积比范数定义又多了。
在线性空间上定义内积。其空间称为内积空间。
内积空间可在空间中建立欧几里得几何学,例如交角、垂直和投影等,故习惯上称其为欧几里得空间,这也是我们最习惯的空间。

2.8 希尔伯特空间

1904-1910年希尔伯特引入无穷实数组并定义内积,其空间称为内积空间,再加上完备性,称为希尔伯特空间(无穷维)。它是欧几里得空间的一个推广,其不再局限于有限维的情形。与欧几里得空间相仿,希尔伯特空间是一个内积空间,其上有角和距离的概念。
希尔伯特空间一般是函数,常见的是含有各种频率的平面波函数,一种频率对应一个基底,维度是无穷,这些基底即平面波函数是完备的(Hilbert空间中的任何元素都可以用平面波函数展开, 其实就是指傅里叶变换), 正交(平面波函数做"点积"为delta函数)

2.9 拓扑空间

欧几里得几何学需要内积,但连续的概念不需要内积,甚至不需要距离。比如,社交圈的描述;学号的指定是”连续“的。圈子不是距离。
x x x是任一集合 τ ∈ 2 x \tau \in \mathbf{2}^{x} τ2x,若满足:

  1. τ \tau τ内任意个集合的并仍属于 τ \tau τ
  2. τ \tau τ内有限个集合的交仍属于 τ \tau τ
  3. x x x和空集仍属于 τ \tau τ

则称 τ \tau τ x x x上的一个拓扑。称 ( x , τ ) (x,\tau) (x,τ)为拓扑空间。称 x ∈ X , x n ⊂ X ; x n → x . x \in X,{x_{n} }\subset X ; x_n \rightarrow x. xX,xnX;xnx.是指:对含有 x x x的任一开集 O ∈ τ O \in\tau Oτ存在 N N N,当 n &gt; N n&gt;N n>N时, x n ∈ O x_n \in O xnO

综述

线性空间又称作向量空间,关注的是向量的位置,对于一个线性空间,知道基(相当于三维空间中的坐标系)便可确定空间中元素的坐标(即位置);线性空间只定义了加法和数乘运算。如果我们想知道向量的长度怎么办?—-定义范数,引入赋范线性空间赋范线性空间定义了范数的线性空间!如果我们想知道向量的夹角怎么办?—-定义内积,引入内积空间3.内积空间定义了内积的线性空间!!4.欧式空间定义了内积的有限维实线性空间!如果我们想研究收敛性(极限)怎么办?—-定义完备,Banach空间完备的赋范线性空间!Hilbert空间完备的内积空间!!!(极限运算中不能跑出度量的范围)他们之间的关系可以用下图表示:
在这里插入图片描述

  • 3
    点赞
  • 12
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值