机器学习吴恩达视频 课后错题

 A. For these values of θ0 and θ1 that satisfy J(θ0,θ1)=0, we have that hθ(x(i))=y(i) for every training example (x(i),y(i))

这种情况是指所有的数据都在拟合的曲线上这种情况

 B. For this to be true, we must have y(i)=0 for every value of i=1,2,…,m.

这项是错的,应为我们要保证的是J()=0,而不是y(i)

 C. Gradient descent is likely to get stuck at a local minimum and fail to find the global minimum.

反例:线性回归函数没有局部最优值,所以其梯度下降函数也不会困在局部最小值里

D.We can perfectly predict the value of y even for new examples that we have not yet seen. (e.g., we can perfectly predict prices of even new houses that we have not yet seen.)

perfectly这一词太过绝对


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值