数据结构——图(1)

本文详细介绍了图数据结构,包括无向图和有向图的定义、术语和性质。阐述了无向图与有向图的区别,如边的表示、邻接关系以及度的概念,并探讨了完全图、生成树、连通性等相关概念。此外,还提到了图的其他特性,如稀疏图和稠密图,以及权重在图中的应用。
摘要由CSDN通过智能技术生成

 数据结构—图

  图(Graph)是一种比线性表和树更为复杂的数据结构。

  线性结构:是研究数据元素之间的一对一关系。在这种结构中,除第一个和最后一个元素外,任何一个元素都有唯一的一个直接前驱和直接后继。 

  树结构:是研究数据元素之间的一对多的关系。在这种结构中,每个元素对下(层)可以有0个或多个元素相联系,对上(层)只有唯一的一个元素相关,数据元素之间有明显的层次关系。

  图结构:是研究数据元素之间的多对多的关系。在这种结构中,任意两个元素之间可能存在关系。即结点之间的关系可以是任意的,图中任意元素之间都可能相关。

(一)图的定义和术语

  一个图(G)是由二个集合V和E构成的二元组,记为G=(V,E) 。其中:V是图中顶点(Vertex)的非空有限集合;E是图中边的有限集合。从数据结构的逻辑关系角度来看,图中任何一个顶点都有可能与图中其他顶点有关系,而图中所有定点都有可能与某一顶点有关系。将顶点集合为空的图称为空图。其形式化定义为:

G=(V ,E)

V={v|vÎdata object}

E={<v,w>| v,wÎV∧p(v,w)}

P(v,w)表示从顶点v到顶点w有一条直接通路。

弧(Arc) :表示两个顶点v和w之间存在一个关系,用顶点偶对<v,w>表示。通常根据图的顶点偶对将图分为有向图和无向图。

有向图(Digraph):若图中每条边都是有方向的(图G的关系集合E(G)中,顶点偶对<v,w>的v和w之间是有序的),称图G是有向图。在有向图中,若<v,w>ÎE(G) ,表示从顶

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

龙星尘

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值