CS230_Leture2的学习笔记2之深度学习
我们先来回顾下第二章的学习目标:
而对于第二章Week1
的学习目标已经完成,具体学习内容参考博主另一篇博客,站内搜索 CS230(DeepLearning)Leture2的学习笔记(1)之深度学习简介
就好。
Week2
吴恩达老师从逻辑回归二分类说起。逻辑回归相关基础代码等可以参考博主另一篇博客:站内搜索深度学习(tensorflow版本)(一)-----拟合y=w*x+b,从线性回归说起逻辑回归与FM(含推导、手撕及Python和scala代码
或者点击此处跳转。
############### 我是华丽的分割线 ###############
二分类问题吴老师用图像举例子。
例子是辨别上面照片是否是一个猫。是/否构成了一个二分类问题。
给定一个RGB图像,假设图像size是64 * 64 * 3。将这个数据做成一个vector输入model。这个我们来看示意的人脸识别的(需要梯子)例子。
那么如何构造这个损失函数呢?且听分解:
我们的目标是想让similar encoding
尽可能相近,different encoding
尽可能远离。如果我们用A
表示anchor
,P
表示positive
, N
表示negative
,那么它的目标函数是?选择题A
or B
or C
(A)
原因显然的,没太理解的同学评论留言博主回答~
刚刚是一个形象表达,那么整体上来说,损失函数怎么学习到最小的呢?下面一张图胜千言~
如果客官看着还行,你懂的~