“ 今天的主角是:2023年4月份新鲜出炉的优化算法,“减法平均优化器”,目前知网还搜不到。该算法原理简单,非常适合新手,算上初始化粒子,总共就4个公式。但是!重点来了,该算法原理虽然简单,但是寻优效果却是极好的。下面会将该算法与粒子群算法和灰狼算法进行对比。”
01
—
减法平均优化器原理
减法优化器(Subtraction-Average-Based Optimizer,SABO)设计的基本灵感来自数学概念,如平均值、搜索代理位置的差异以及目标函数的两个值的差异符号。
-
(1)算法初始化
粒子初始化公式和粒子群等大部分智能优化算法一样,就是在上下限值的范围内采用rand函数随机生成一堆粒子。
-
(2)SABO数学模型
SABO算法引入了一个新的计算概念,“-v”,称为搜索代理B与搜索代理a的v−减法,定义如下:
是一个维度为m的向量,是一个[1,2]生成的随机数,F(A)和F(B)分别是搜索代理A和B的目标函数的值,sign是signum函数。
在SABO算法中,任何搜索代理Xi在搜索空间中的位移都是通过每个搜索代理Xj的“-v”减法的算术平均值来计算的。位置更新方式如下:
N是粒子的总数,ri是一个服从正态分布的随机值。
粒子位置替换公式,这个也与绝大多数算法一致。
SABO算法的数学模型如下:
SABO算法流程图如下:
02
—
SABO的寻优效果展示
依旧是在CEC2005函数上进行测试,算法设置迭代次数为1000次,种群个数为30个。
由这个F1函数可以看到,SABO算法在大约800次左右就寻优到了0。而其他算法最多也就是e-几百次方,很少有直接到0的。另外说一下,SABO算法由于原理简单,其运行速度是极快的,大家可以自行尝试哈。
接下来直接将SABO算法与灰狼算法和粒子群算法进行对比,SABO算法的好坏大家自行体会了。
03
—
SABO的MATLAB代码
function[Best_score,Best_pos,SABO_curve]=SABO(N,T,lo,hi,m,fitness)
lo=ones(1,m).*(lo); % Lower limit for variables
hi=ones(1,m).*(hi); % Upper limit for variables
%% INITIALIZATION
for i=1:m
X(:,i) = lo(i)+rand(N,1).*(hi(i) - lo(i)); % Initial population
end
for i =1:N
L=X(i,:);
fit(i)=fitness(L);
end
%%
for t=1:T % algorithm iteration
%% update: BEST proposed solution
[Fbest , blocation]=min(fit);
if t==1
xbest=X(blocation,:); % Optimal location
fbest=Fbest; % The optimization objective function
elseif Fbest<fbest
fbest=Fbest;
xbest=X(blocation,:);
end
%%
DX=zeros(N,m);
for i=1:N
%% based om Eq(4)
for j=1:N
I=round(1+rand+rand);
for d=1:m
DX(i,d)=DX(i,d)+(X(j,d)-I.*X(i,d)).*sign(fit(i)-fit(j));
end
end
X_new_P1= X(i,:)+((rand(1,m).*DX(i,:))./(N));
X_new_P1 = max(X_new_P1,lo);
X_new_P1 = min(X_new_P1,hi);
%% update position based on Eq (5)
L=X_new_P1;
fit_new_P1=fitness(L);
if fit_new_P1<fit(i)
X(i,:) = X_new_P1;
fit(i) = fit_new_P1;
end
%%
end% end for i=1:N
%%
best_so_far(t)=fbest;
average(t) = mean (fit);
end
Best_score=fbest;
Best_pos=xbest;
SABO_curve=best_so_far;
end
这里还是直接上核心代码,大家直接复制即可。
SABO算法的文献,SABO的MATLAB代码,SABO算法与灰狼算法和粒子群算法的对比代码统统都打包好了,直接回复关键词免费获取。
后台回复关键词,获取代码:2023
觉得文章不错的,给作者留个赞吧!谢谢!