从数据处理,优化VMD特征提取,再到SABO(减法平均优化器)优化核极限学习机的故障诊断,实现故障诊断的全流程,其他类型的故障诊断均可参考此流程。
友情提示:对于刚接触故障诊断的新手来说,这篇文章信息量可能有点大,大家可以收藏反复阅读。即便有些内容本篇文章没讲出来,但其中的一些跳转链接,也完全把故障诊断这个故事讲清楚了。
先给大家看看文件夹目录,都是作者精心整理过的。
如图所示,本次内容一共做了三件事情:
一,对官方下载的西储大学数据进行处理,步骤如下:
1.一共加载10种数据,然后取每个数据的DE_time(%DE是驱动端数据 FE是风扇端数据 BA是加速度数据 选择其中一个就行)
2.设置滑动窗口w,每个数据的故障样本点个数s,每个故障类型的样本量m
3.将所有的数据滑窗完毕之后,综合到一个data变量中
有关西储大学数据的处理之前有文章也讲过,大家可以看这篇文章:西储大学轴承诊断数据处理,matlab免费代码获取
图中的1750,1772,1790是西储大学轴承的转速,大家做诊断的时候,选择其中一个即可,即选同一转速下的不同故障进行诊断更有意义!
二,对第一步数据处理得到的数据进行特征提取
选取五种适应度函数进行优化,这里大家可以自行决定选哪一个!以此确定VMD的最佳k和α参数。五种适应度函数分别是:最小包络熵,最小样本熵,最小信息熵,最小排列熵,排列熵/互信息熵,代码中可以一键切换。至于应该选择哪种作为自己的适应度函数,大家可以看这篇文章。VMD为什么需要进行参数优化,最小包络熵/样本熵/排列熵/信息熵,适应度函数到底该选哪个
老粉应该知道,之前也推过一篇文章,就是关于西储大学特征提取的,但当时作者懒,没有写一个大循环,需要大家针对每种类型的数据依次提取。这次,作者把特征提取写了一个大循环,方便一键特征提取,大家也可以很简单的更换自己的数据!
至于特征提取的具体原理,也在这篇文章进行过详细介绍,大家可以跳转阅读。简单来说,就是利用包络熵最小的准则把每个样本的最佳IMF分量提取出来,然后对其9个指标进行计算,分别是:均值,方差,峰值,峭度,有效值,峰值因子,脉冲因子,波形因子,裕度因子。然后用这9个指标构建每个样本的特征向量。
另外本篇文章采用了2023年一个较新且效率较高的智能算法---减法优化器(SABO),对VMD参数进行了优化,找到了每个故障类型的最佳IMF分量,并利用包络熵最小的准则,提取出了最佳的IMF分量。
三,采用SABO优化核极限学习机的正则化参数和核参数
这里就不用多讲了,大家搜一些智能算法优化核极限学习机的文章,会有很多。
结果展示
未优化的KELM分类结果:
混淆矩阵图,有的文章会采用这种图:
SABO-KELM的适应度曲线图:
优化后的KELM分类结果:
优化后的KELM分类混淆矩阵图:
部分代码
%% 初始化
clear
close all
clc
warning off
%% 数据读取
addpath(genpath(pwd));
load vmddata.mat %加载处理好的特征数据
data = vmddata;
%% 数据载入
bv = 120; %每种状态数据有120组
% 加标签值
hhh = size(data,2);
for i=1:size(data,1)/bv
data(1+bv*(i-1):bv*i,hhh+1)=i;
end
input=data(:,1:hhh);
output1 =data(:,end);
for i=1:size(data,1) %一共10种类型
switch output1(i)
case 1
output(i,1)=1;
case 2
output(i,2)=1;
case 3
output(i,3)=1;
case 4
output(i,4)=1;
case 5
output(i,5)=1;
case 6
output(i,6)=1;
case 7
output(i,7)=1;
case 8
output(i,8)=1;
case 9
output(i,9)=1;
case 10
output(i,10)=1;
end
end
jg = bv; %每组120个样本
tn = 90; %选前tn个样本进行训练
input_train = []; output_train = [];
input_test = []; output_test = [];
for i = 1:max(data(:,end))
input_train=[input_train;input(1+jg*(i-1):jg*(i-1)+tn,:)];
output_train=[output_train;output(1+jg*(i-1):jg*(i-1)+tn,:)];
input_test=[input_test;input(jg*(i-1)+tn+1:i*jg,:)];
output_test=[output_test;output(jg*(i-1)+tn+1:i*jg,:)];
end
input_train = input_train';
input_test = input_test';
%归一化
[inputn_train,inputps]=mapminmax(input_train);inputn_train = inputn_train';
[inputn_test,inputtestps]=mapminmax('apply',input_test,inputps); inputn_test =inputn_test';
pop=[1 1];
kernel='RBF_kernel';%核函数
%% 采用SABO优化KELM
%%
kernel='RBF_kernel';
[Best_score,Best_pos,SABO_curve]=SABOforKELM(kernel,inputn_train,output_train,inputn_test,output_test);
figure
plot(SABO_curve)
xlabel('迭代次数')
ylabel('适应度值')
title('SABO优化KELM的适应度曲线')
考虑到大家可能会用到VMD的相关作图,包络谱,频谱图等,作者在这里也一并附在代码中了。这部分大家需要自行更改数据!也就是作者比较火的文章之一,这里边提到的所有代码:VMD分解,matlab代码,包络线,包络谱,中心频率,峭度值,能量熵,样本熵,模糊熵,排列熵,多尺度排列熵,西储大学数据集为例
代码获取
完整代码获取,后台回复关键词:
轴承诊断