截止到本期MATLAB机器学习预测全家桶,一共发了21篇关于机器学习预测代码的文章。算上这一篇,一共22篇!参考文章如下:
2.机器学习预测全家桶,多步预测之BiGRU、BiLSTM、GRU、LSTM,LSSVM、TCN、CNN,光伏发电数据为例
3.机器学习预测全家桶,多步预测之组合预测模型,光伏发电数据为例
4.机器学习预测全家桶之Xgboost,交通流量数据预测为例
5.机器学习预测全家桶之CNN-RVM(相关向量机),风电功率预测
6.水N篇论文就靠它了!Adaboost风电功率预测,机器学习预测全家桶
7.机器学习预测全家桶之单变量输入单步预测,天气温度预测为例
8.2023年冠豪猪算法优化CNN-GRU-Attention多特征输入多步预测
9.机器学习预测全家桶之单变量输入多步预测,天气温度预测为例
10.机器学习预测全家桶新增VMD-TCN-GRU/BiGRU-Attention模型
11.金豺算法优化TCN-BiGRU-Attention多特征输入单步预测
13.12种算法优化CNN-BiLSTM-Attention多特征输入单步预测
14.新思路:TCN-RVM模型,你见过吗?机器学习预测全家桶新增模型
15.再添数十种回归模型!最全机器学习预测全家桶,MATLAB代码,这次千万别再错过了!
16.12种算法优化CNN-BiGRU-Attention单变量输入单步预测,持续更新
17.BiTCN、BiTCN-SVM、BiTCN-LSTM、BiTCN-BiGRU机器学习预测全家桶
18.机器学习预测全家桶再更新!CEEMDAN-VMD双分解CNN-BiLSTM预测,MATLAB代码
19.四种算法优化ELM,实现多变量输入超前24步预测功能,机器学习预测全家桶再更新!
20.7种2024年算法优化BP,实现回归,单/多变量输入,单/多步预测功能
21.电力负荷超前96步预测,采用2024最新鹭鹰算法优化ELM实现,MATLAB代码
本期在MATLAB预测全家桶更新分位数回归区间预测模型。
包括如下:QRBiGRU、QRBiTCN、QRCNNBiGRU、QRCNNBIGRUATTENTION、QRCNNLSTM、QRGRU、QRLSTM、QRTCN,以上模型均为单特征输入单步预测。想要改为多特征多步的小伙伴,直接照猫画虎,去全家桶找到自己想要的模型,修改即可。
分位数回归概念介绍
分位数回归是一种统计方法,用于对因变量的不同条件分位数进行建模和预测。与传统的普通最小二乘回归不同,分位数回归能够捕捉到因变量分布的整体形状,而不仅仅是均值,这意味着我们可以得到关于因变量分布更全面的信息。分位数回归区间预测通过回归分析的方法,将自变量与因变量的不同分位数联系起来,从而得到在不同分位数处的条件分布。在分位数回归区间预测中,我们可以得到每个分位数处的预测值,以及对应的置信区间。这种方法可以帮助我们更好地了解数据在不同情况下的变化情况,提高预测的准确性。
分位数回归原理概述:
分位数回归通过分位数逼近随机变量的条件分布,目的是为了构建随机变量的分位数与一系列相关因素x之间的关系,QR模型可以表示为
式中:为在分位水平α下得到的预测功率点对应的第α个条件分位数,α的范围为(0, 1);x为输入变量;β(α)为回归系数。
求解不同分位数点的回归系数β(α)的问题可以转化为最小化损失函数L为
式中:Pi为实际功率值;n为功率点的个数;γα表示不对称函数。
将不对称函数展开可以得到损失函数为
在一定的置信区间1−τ下,分别通过取分位数水平α为τ/2和π1−π/2可以得到置信区间的上、下界。
区间评价指标
区间覆盖率(prediction interval coverage probability,PICP)PICP、区间平均宽度(prediction interval normalized average,PINAW)PINAW是区间预测常用的评价指标。
PICP定义为在一定的置信水平下实际功率值落在预测功率估计区间上下限内的概率,主要反映预测区间的可靠性。PICP越大,表明模型的区间预测效果越好,计算式为
式中:Z(Pi)为布尔量;分别为1−τ置信水平下概率预测区间的上、下限;N为样本数量。
PINAW定义为所有预测区间宽度的平均值,主要反映预测分布的离散程度,衡量区间的锐度。在PICP一定时,PINAW越小,表明模型的区间预测效果越好,计算式为
式中:C为实际功率的最大值和最小值之差。
结果展示
数据集采用之前提到过的风电场预测数据集。只对功率一列进行单特征输入单步预测。要改为其他模型,请到全家桶的其他模型文件夹选择相应模型,对照着改就行。
已将本文算法加入机器学习预测全家桶中。
MATLAB预测全家桶目录如下:
机器学习MATLAB全家桶代码获取
点击下方卡片关注,获取更多代码