概述
本期在TCN网络种融合CBAM注意力机制,以增强TCN网络的特征提取能力,使模型在信号形态变化较大处,能有选择性地关注具有关键信息的通道,能通过动态调整每个通道内和空间位置上的加权系数,突出关注目标的细节信息, 减少特征提取中的冗余信息,,加强模型的特征表达能力。
同时为了进一步提升网络的分类能力,采用经典的SVM分类器替换原始的Softmax分类器。分别在西储大学、江南大学的轴承数据集进行测试,实验表明,本期提出的CBAM-TCN-SVM模型具有较高的分类能力。
CBAM机制通过引入通道注意力和空间注意力机制,CBAM能够有效地聚焦在最重要的特征上,帮助网络在处理复杂任务时取得更高的精度。因此很多学者论文都有提及。方向为机器学习、故障分类的小伙伴不妨借鉴一下这个模型,可以帮助你快速入门故障诊断。
时间卷积神经网络(TCN)是一种可以对时间 序列数据进行处理的神经网络架构,与传统的卷积 神经网络相比,它可以更有效地提取时序数据的特 征。 在 TCN 的网络结构中,采用因果卷积提取 时间序列数据中的特征,能够使网络层间具有因果 关系,实现时序建模。 通过扩张因果卷积扩大感受 野,一个卷积能够学习到更多的特征,可以适应不 同尺度的时间依赖关系。 引入残差连接能够增加 TCN 层数,有效解决梯度消失和爆炸问题,保持稳 定的网络性能。
TCN 网络是由多个残差块叠加构成,TCN 接受域受扩张因子、滤波器大小和网络深度的影响,而且在网络层数增多的过程中,会出现 梯度消失或梯度爆炸的情况。 所以必须要加入残差模块,简化深层网络的训练,使深层网络运行稳 定,保持较好的性能。 残差模块如图结构如下:
混合注意力机制(CBAM)包括通道注意力机制和空间注意力机制,CAM(channel attention module) 模块执行通道注意力,SAM(spatial attention mo modu)模块执行空间注意力,CBAM通过串联方式将通道和空间注意力机制结合在一起,全方位关 注输入特征的通道和空间两个方面,它使用空间注意力机制来定位目标区域,获取权重进行调整, 通过通道注意力机制优化卷积通道之间的资源分配,提升目标区域的特征表现能力,提升TCN对输 入数据的关注程度,从而提高模型性能。CBAM网络框架图如下:
CBAM-TCN网络
在基本TCN模块中,因为有效的故障特征会被 全局平均池化层忽略,造成局部故障特征信息丢 失。 当全连接层接收到所获得信息时,不能将与故 障有关的信息进行有效的合理组合。 因此,为了提 高故障诊断准确率,TCN需要增强对局部特征信息 的提取能力,通过充分表示特征,更准确地捕获数 据中的信息,提高模型的性能和泛化能力。
在基本TCN模块中第二个扩张因果卷积层后嵌入CBAM注意力机制模块,通过CBAM模块自适应地学习通道注意力和空间注意力的权重,提高诊断模型的特征表达能力,进一步获取局部有效信息,抓取与故障特征相关的信息。其可以看作成是 在不同维度上捕获特征之间的相关性,从而提高模型性能。在基本TCN模块中引入软阈值函数,保留 有效的特征。阈值函数利用注意力机制训练的自 网络进行自适应学习,阈值不是确定值。在TCN的 结构中创建一个子网络,该子网络经过注意力机制 进行训练。在训练过程中,通过优化来动态调整阈 值函数的值,以减少模型输出与原始输入之间的差 异。基本CBAM-TCN模块如图所示:
结果展示
本期采用MATLAB搭建的CBAM-TCN网络结构如下:
分别在西储大学轴承数据和江南大学轴承数据进行实验。
一、西储大学轴承数据实验结果
对工况0的10种故障状态进行数据划分,每种状态收集200个样本,每个样本大小为1×1024,训练集:验证集:测试集=7:2:1。
FFT-CBAM-TCN-SVM模型诊断结果:
在西储大学数据上的诊断结果可达到100%的诊断效果。
二、江南大学轴承数据实验结果
江南大学数据共12种故障状态,每种状态收集200个样本,每个样本大小为1×1024,训练集:验证集:测试集=7:2:1。江南大学数据的难度较大,准确率能达到95%以上的模型真不常见!
代码目录
按照程序步骤一步步执行即可。注释详细,以上所有图片均可运行出来。
提示:此代码用到了 trainnet函数,此函数只有在2023b以上MATLAB才能用,下载链接附在代码包里边了。
本文代码获取
链接:https://mbd.pub/o/bread/aJeVmpZq
已将本文代码添加至故障诊断全家桶中,
已购买全家桶的小伙伴,可以直接跳转以下链接下载哦!
故障诊断全家桶获取链接:
https://mbd.pub/o/bread/ZJ2Ym5ts