数学物理方程之通解

本文探讨了波动方程、扩散方程、矩形区域与极坐标下的Laplace方程的通解。通过分离变量法,分别求解各类型方程,并给出边界条件下的特征值和特征函数。利用这种方法,可以找到如波动和热传导方程的解,以及二维Laplace方程在不同坐标系下的解。
摘要由CSDN通过智能技术生成

波动方程 u t t = a 2 u x x u_{tt}=a^2u_{xx} utt=a2uxx

齐次波动方程分离变量得到

{ T ′ ′ a 2 T = X ′ ′ X = − λ X ′ ′ + λ X = 0 T ′ ′ + λ a 2 T = 0 \left\{\begin{array}{l}\frac{T^{\prime \prime}}{a^{2} T}=\frac{X^{\prime \prime}}{X}=-\lambda \\ X^{\prime \prime}+\lambda X=0 \\ T^{\prime \prime}+\lambda a^{2} T=0\end{array}\right. a2TT=XX=λX+λX=0T+λa2T=0

在不同边界条件下有不同的特征值和特征函数

{ λ n = n 2 π 2 l 2 X n ( x ) = sin ⁡ λ n x , u ∣ x = 0 = 0 = u ∣ x = l \left\{\left.\begin{array}{l}\lambda_{n}=\frac{n^{2} \pi^{2}}{l^{2}} \\ X_{n}(x)=\sin \sqrt{\lambda_{n}} x\end{array} ,\quad \left.u\right|_{x=0}\right.=0=\left.u\right|_{x=l}\right. { λn=l2n2π2Xn(x)=sinλn x,ux=0=0=ux=l

{ λ n = [ ( 2 n + 1 ) π 2 l ] 2 X n ( x ) = sin ⁡ λ n x , u ∣ x = 0 = 0 = u x ∣ x = l \left\{\left.\begin{array}{l}\lambda_{n}=\left[\frac{(2n+1)\pi}{ {2l}}\right]^{2} \\ X_{n}(x)=\sin \sqrt{\lambda_{n}} x\end{array}, \quad \left.u\right|_{x=0}\right.=0=\left.u_x\right|_{x=l}\right. { λn=[2l(2n+1)π]2Xn(x)=sinλn x,ux=0=0=uxx=l

{ λ n = n = [ ( 2 n + 1 ) π 2 l ] 2 X n ( x ) = cos ⁡ λ n x , u x ∣ x = 0 = 0 = u ∣ x = l \left\{\begin{array}{l}\lambda_{n}={n}=\left[\frac{(2n+1)\pi}{ {2l}}\right]^{2} \\ X_{n}(x)=\cos \sqrt{\lambda_{n}} x\end{array}, \quad \left.u_x\right|_{x=0}\right.=0=\left.u\right|_{x=l} { λn=n=[2l(2n+1)π]2Xn(x)=cosλn x,uxx=0=0=ux=l

{ λ n = n 2 π 2 l 2 X n ( x ) = cos ⁡ λ n x , u x ∣ x = 0 = 0 = u x ∣ x = l \left\{\begin{array}{l}\lambda_{n}=\frac{n^{2} \pi^{2}}{l^{2}} \\ X_{n}(x)=\cos \sqrt{\lambda_{n}} x\end{array}, \quad \left.u_x\right|_{x=0}\right.=0=\left.u_x\right|_{x=l} { λn=l2n2π2Xn(x)=cosλn

  • 5
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值