奇点
奇点 { 孤 立 奇 点 { 可 去 奇 点 m 阶 奇 点 本 性 奇 点 非 孤 立 奇 点 \left\{\begin{array}{l} 孤立奇点\left\{\begin{array}{l} 可去奇点\\m阶奇点\\本性奇点\end{array}\right.\\非孤立奇点\end{array}\right. ⎩⎪⎪⎨⎪⎪⎧孤立奇点⎩⎨⎧可去奇点m阶奇点本性奇点非孤立奇点
若函数 f ( z ) f(z) f(z) 在 z = a z=a z=a 不解析(不可微或无定义),而在 z = a z=a z=a 的某去心邻域 0 < ∣ z − a ∣ < ε 0<|z-a|<\varepsilon 0<∣z−a∣<ε 内解析,则称 z = a z=a z=a 是 f ( z ) f(z) f(z) 的一个孤立奇点。
如果在 z = a z=a z=a 的无论多么小的邻域内,总有除 z = a z=a z=a 以外的奇点,则 z = a z=a z=a 是 f ( z ) f(z) f(z) 的非孤立奇点。
举例: f ( z ) = 1 sin 1 z , z = 0 f(z)=\frac{1}{\sin \frac{1}{z}} ,\quad z=0 f(z)=sinz11,z=0 为其非孤立奇点
孤立奇点的分类
设 a a a 为 f ( z ) f(z) f(z) 的孤立奇点,则 f ( z ) f(z) f(z) 在 a a a 的某去心邻域内可以展成Laurent 级数
f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) n f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} f(z)=n=−∞∑∞cn(z−a)n
称非负幂部分 ∑ n = 0 ∞ c n ( z − a ) n \sum_{n=0}^{\infty} c_{n}(z-a)^{n} ∑n=0∞cn(z−a)n 为 f ( z ) f(z) f(z) 在点 a a a 的正则部分,而称负幂部分 ∑ n = 1 ∞ c − n ( z − a ) − n \sum_{n=1}^{\infty} c_{-n}(z-a)^{-n} ∑n=1∞c−n(z−a)−n 为 f ( z ) f(z) f(z) 在点 a a a 的主要部分。
(i) 如果