解析函数的奇点

解析函数的奇点

奇点

奇点 { 孤 立 奇 点 { 可 去 奇 点 m 阶 奇 点 本 性 奇 点 非 孤 立 奇 点 \left\{\begin{array}{l} 孤立奇点\left\{\begin{array}{l} 可去奇点\\m阶奇点\\本性奇点\end{array}\right.\\非孤立奇点\end{array}\right. m

若函数 f ( z ) f(z) f(z) z = a z=a z=a 不解析(不可微或无定义),而在 z = a z=a z=a 的某去心邻域 0 < ∣ z − a ∣ < ε 0<|z-a|<\varepsilon 0<za<ε 内解析,则称 z = a z=a z=a f ( z ) f(z) f(z) 的一个孤立奇点。
如果在 z = a z=a z=a 的无论多么小的邻域内,总有除 z = a z=a z=a 以外的奇点,则 z = a z=a z=a f ( z ) f(z) f(z) 的非孤立奇点。

举例: f ( z ) = 1 sin ⁡ 1 z , z = 0 f(z)=\frac{1}{\sin \frac{1}{z}} ,\quad z=0 f(z)=sinz11,z=0 为其非孤立奇点

孤立奇点的分类

a a a f ( z ) f(z) f(z) 的孤立奇点,则 f ( z ) f(z) f(z) a a a 的某去心邻域内可以展成Laurent 级数
f ( z ) = ∑ n = − ∞ ∞ c n ( z − a ) n f(z)=\sum_{n=-\infty}^{\infty} c_{n}(z-a)^{n} f(z)=n=cn(za)n
称非负幂部分 ∑ n = 0 ∞ c n ( z − a ) n \sum_{n=0}^{\infty} c_{n}(z-a)^{n} n=0cn(za)n f ( z ) f(z) f(z) 在点 a a a正则部分,而称负幂部分 ∑ n = 1 ∞ c − n ( z − a ) − n \sum_{n=1}^{\infty} c_{-n}(z-a)^{-n} n=1cn(za)n f ( z ) f(z) f(z) 在点 a a a主要部分

(i) 如果

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

力语

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值