YOLOv3算法详解

论文背景

论文全称:YOLOv3: An Incremental Improvement
论文链接:https://arxiv.org/abs/1804.02767
论文日期:2018.4.8

本文对YOLO进行了优化,设计了一个新的神经网络,这个神经网络的结构更复杂,但是准确率更高。并且也很快,使用320 × 320的输入,运行速度为22ms,运行准确率为28.2mAP。运行速度比SSD快3倍。

创新点:

  1. 使用独立的逻辑分类器代替softmax算法;
  2. 使用空间金字塔结构预测边界框;
  3. 设计了darknet-53神经网络结构。

算法简介

边界框的尺寸设置:

与YOLOv2相同,使用维度聚类的方法来预测边界框,每个单元格预测3个尺寸;
在这里插入图片描述
在这里插入图片描述
在训练期间,我们使用平方误差损失的总和。假设对于一些坐标预测的值是tˆ∗ ,梯度就是由ground truth box计算出的ground truth的值减去预测值:t

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值