Deformable ConvNet算法详解(对象尺寸/形状变换)

Deformable ConvNets是为了解决CNN在处理几何变换时的局限性,通过添加可变形卷积和RoI池化,使模型能适应对象尺寸、形状变化。该算法在目标检测领域表现出色,通过端到端学习实现空间采样定位的增强。论文中介绍了Deformable convolution和Deformable RoI pooling的原理,以及在ImageNet和PASCAL VOC数据集上的实验结果,证实了其有效性和效率。
摘要由CSDN通过智能技术生成

算法背景

论文全称:Deformable Convolutional Networks
论文链接:https://arxiv.org/abs/1703.06211
论文日期:2017.6.5

算法提出背景:
CNN本质上仅限于大型模型,对几何变换建模的能力主要来自于广泛的数据增强,庞大的模型容量以及一些简单的手工模型。
同时还受到模型几何变化的限制,因为模型都是固定几何结构,卷积层,池化层以及RoI pooling层。缺失处理几何变化的内部机制。

CNN模型限制的结果:

  • 这就导致了相同CNN层的所有激活单元的感受野尺寸相同,会影响高层CNN层在空间定位编码语义,因为不同的定位与不同的尺寸与变形的对象相关。
  • 所有方法都依赖于基于原始边界框的特征提取,尤其不适用于刚性对象。

因此需要提出一个新的模型,能够适应检测对象尺寸、姿态、视野、部件变形中的几何变化以及模型几何变换。

基于这些要求,过去有两种解决方法:

  • 数据集(足够的变量),进行数据增强。 花费高,模型复杂。
  • 转换不变的特征与算法,eg. SIFT,sliding window。

缺点:

  • 基于几何变换是固定这一假设,泛化能力差;
  • 手工设计不变的特征与算法很困难,并且不灵活。

本文提出了Deformable conv算法,有两个方面的改进:

  1. 在conv5层添加了一个变形卷积,Deformable convolution模型;
  2. 使用了position-sensitive RoI pooling,deformable RoI pooling模型。deformable RoI pooling是CNN中第一个端到端学习池化区域的模型

这两个模型的中心思想:
1. 都是增强带有额外offset的模型的空间采样定位,
2. 同时学习目标任务的offset。

算法细节

Deformable convNets包含Deformable convolution与Deformable RoI pooling两种方式的变换。
这两个模型都是light weight,为offset学习加入了少量的参数与计算。可以通过标准反向传播进行端到端的训练。
在这里插入图片描述

  • 6
    点赞
  • 24
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值