9/21 Closure of Relations & Equivalence Relation

如果对你有什么帮助的话 ,点个赞吧 谢谢(鞠躬
但是为什么这个访问量这么高=(´・ω・`)?

Closure of relation

Introduction

Let R R R be a relation on set A A A. R ′ R' R is called the reflexive(symmetric, transitive ) closure of R R R

We write r ( R ) ( s ( R ) , t ( R )    o r    R + ) r(R)(s(R),t(R)\;or\;R^+) r(R)(s(R),t(R)orR+), if there exists a relation R ′ R' R with reflexivity (symmetric, transitivity) containing R R R.
Such that R ′ R' R is a subset of every relation with reflexivity(symmetry, transitivity) containing R R R.

^ in other words closure must be the smallest relation with particular property

Condition

a closure must satisfy

  1. R ′ R' R is reflexivity(symmetry, transitivity)
  2. R ⊆ R ′ R \subseteq R' RR
  3. For any reflexive (symmetric, transitive) relation R ′ ′ R'' R, if R ⊆ R ′ ′ R\subseteq R'' RR, then R ′ ⊆ R ′ ′ R'\subseteq R'' RR

Theorem

Let R 1 R_1 R1 and R 2 R_2 R2 be relations on A A A, and R 1 ⊆ R 2 R_1\subseteq R_2 R1R2. Then

  1. r ( R 1 ) ⊆ r ( R 2 ) r(R_1)\subseteq r(R_2) r(R1)r(R2)
  2. s ( R 1 ) ⊆ s ( R 2 ) s(R_1)\subseteq s(R_2) s(R1)s(R2)
  3. t ( R 1 ) ⊆ t ( R 2 ) t(R_1)\subseteq t(R_2) t(R1)t(R2)

Computing closures

Let R R R be a relation on a set A A A, and I A I_A IA be identity(diagonal) relation. Then

  1. r ( R ) r(R) r(R)
    r ( R ) = R ∪ I A ( I A = { ( a , a ) ∣ a ∈ A } ) r(R) = R\cup I_A\\ (I_A = \{(a,a)|a\in A\}) r(R)=RIA(IA={(a,a)aA})
    reflexive closure of empty relation on A A A is the identity relation on A A A
  2. s ( R ) s(R) s(R)
    s ( R ) = R ∪ R − 1 s(R) = R\cup R^{-1} s(R)=RR1
    The symmetric closure of empty relation on A A A, is an empty relation
  3. t ( R ) t(R) t(R)
    Let R R R be a relation on A A A, Then
    在这里插入图片描述
    ^infinity set
    在这里插入图片描述
    ^finite set( A A A be set with ∣ A ∣ = n |A| = n A=n)

Equivalence Relation

A relation R R R on a set A A A is called an equivalence relation if it is reflexive, symmetric, transitive

partition (quotient)

A partition or a quotient set of a nonempty set A A A is a collection Π \varPi Π of nonempty subsets of A A A such that

  1. Each element of A A A belongs to one of the sets in Π \varPi Π
  2. If A i A_i Ai and A j A_j Aj are distinct elements of Π \varPi Π, then A i ∩ A j = ∅ A_i\cap A_j = \emptyset AiAj=

For example
A = { a , b , c } A = \{a,b,c\} A={a,b,c}
Then, U = { { a , b } , { c } } U=\{\{a,b\},\{c\}\} U={{a,b},{c}}, S = { { a } , { b } , { c } } S=\{\{a\},\{b\},\{c\}\} S={{a},{b},{c}} are both elements of Π \varPi Π

equivalence class

Let R R R be an equivalence relation on a set A A A. The set of all element that are related to an element a a a of A A A is called the equivalence class of a a a.
The equivalence class of a a a with respect to R R R is denoted by [ a ] R [a]_R [a]R.

When only one relation is under consideration, we will delete the subscript R R R and write [ a ] [a] [a] for this equivalence class.

Theorem

Let R R R be an equivalence relation on A A A. Then

  1. For any a ∈ A a\in A aA, a ∈ [ a ] a\in [a] a[a]
  2. If a    R    b a\;R\;b aRb, then [ a ] = [ b ] [a]=[b] [a]=[b]
  3. For a , b ∈ A a,b\in A a,bA, If ( a , b ) ∉ R (a,b)\notin R (a,b)/R, then [ a ] ∩ [ b ] = ∅ [a]\cap[b]=\emptyset [a][b]=

在这里插入图片描述

form equivalence relation with partition on a set

Let Π \varPi Π be a partition of a nonempty set A A A. Let R R R be a relation on A A A, and a    R    b a\;R\;b aRb if only if there exists A i ∈ Π        s . t .    a , b ∈ A i A_i\in\varPi\;\;\;s.t.\;a,b\in A_i AiΠs.t.a,bAi
R = ( A 1 × A 1 ) ∪ ( A 2 × A 2 ) ∪ ⋯ ∪ ( A n × A n ) R = (A_1\times A_1)\cup (A_2\times A_2)\cup\dots\cup(A_n\times A_n) R=(A1×A1)(A2×A2)(An×An)

R R R is an equivalence relation on A A A

Theorem

Given a partition { A i ∣ i ∈ Z } \{ A_i | i\in Z \} {AiiZ} of the set A A A, there is an equivalence relation R R R that has the set A i , i ∈ Z A_i, i\in Z Ai,iZ, as its equivalence classes

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值